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Abstract—Autonomous mobile robots are being introduced in 

human-populated environments with increasing frequency, 

notably in hospitals and long-term care facilities. Ensuring safe 

and intuitive human robot interaction (HRI) is becoming a 

growing need, especially for pedestrians with mobility aids such as 

wheelchairs. The dynamics of wheelchair users differ from those 

of foot pedestrians, so accurate characterization of a wheelchair’s 

location and orientation for state estimation is crucial. The 2D 

laser scanner is a well-suited sensor for accurate distance 

measurements with fast computation speeds, but the sparsity of its 

data is often a hindrance to effective object detection. Despite so, 

2D range data from laser scanners is found to be effective in the 

detection and orientation estimation of wheelchairs, even in 

cluttered environments. The range data from the scanner is pre-

processed by segmenting out objects using density-based 

clustering. A two-step classification algorithm first identifies 

wheelchair candidates from segmented objects with the random 

forest classifier, then estimates the wheelchair’s orientation as one 

of six classes with a neural network. The models achieve 98% true 

positive rate for detection and 86% for orientation classification. 

The outcomes of this research can inform future works in building 

a real time wheelchair detection and state estimation for mobile 

robots.  

Keywords—mobile robots, pedestrian detection, human robot 

interaction 

I. INTRODUCTION  

Human-robot interaction is becoming commonplace as 
autonomous mobile robots are increasingly introduced in public 
settings. Mobile robots can be used for indoor or outdoor 
deliveries, wayfinding, and assistance for patients and clinicians 
in hospitals and rehabilitation centers [1-6]. In populated 
environments, the robot must be able to recognize human 
occupants in its surroundings and respond in appropriate ways 
to avoid confusion or causing injuries. Furthermore, to navigate 
safely and efficiently in settings like hospitals and care facilities, 
robots should be equipped with the ability to identify and path 
plan around pedestrians who use wheelchairs [6]. Wheelchair 
users account for a significant portion of the population at the 
estimated prevalence of 2.2% in the USA [7]. However, the 
detection of wheelchairs has received considerably less attention 
in research compared to the detection of upright walking 
pedestrians. Ensuring safe interaction between mobile robots 
and wheelchair users is critical, especially as the outside 

environment already poses higher injury inducing risks for 
people with mobility impairments [8].  

In facilities where robots are used to guide patients and 
perform delivery tasks, wheelchair detection has been 
investigated using cameras [9-13] or 2D laser scanners [5], [14-
16], both of which are common sensors equipped on mobile 
robots. Our work focuses on laser scanners as a lightweight 
alternative to richer image datasets, which generally require 
higher computation costs for processing and predictions. Laser 
scanners also provide highly accurate distance measurements 
within a large field-of-view. Laser-based methods tend to be 
more robust and perform well in close range and various lighting 
conditions, whereas cameras suffer from lens distortion and 
decreased image quality. However, due to the sparseness of the 
data, the informational content of laser scanners is 
comparatively lower than cameras.  

In addition to detecting wheelchairs from laser scans, we are 
interested in estimating the orientation of the wheelchair, as 
wheelchair users exhibit unique movement characteristics when 
changing directions [6]. To our knowledge, no studies have 
attempted to estimate the angular orientation of a wheelchair in 
application to mobile robots. Knowledge of the orientation of a 
stationary or slow-moving wheelchair can benefit real time path 
planning without the need for temporal tracking, allowing the 
robot to mitigate any safety risks posed to the wheelchair user.  

We experimentally demonstrate that 2D range data from a 
laser scanner can be used to identify manual wheelchairs and 
classify their orientation into one of six categories: back facing, 
front facing, left 45° angled, right 45° angled, left side facing, 
and right side facing. As a pre-processing step, we remove 
continuous lines of points that interfere with segmentation, then 
apply a density-based clustering algorithm to segment object 
clusters. Viable objects candidates are classified into 
wheelchairs or non-wheelchairs using a random forest classifier. 
Orientation estimation of the wheelchair object candidates is 
achieved using an artificial neural network (ANN). The 
proposed pipeline has high detection and orientation estimation 
accuracy, making it feasible for real time autonomous mobile 
robot path planning. 
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II. RELATED WORKS 

A. Wheelchair Detection 

Pedestrian detection for mobile robots often makes use of 2D 
laser scanners, stereo cameras, RGBD cameras, or a fusion of 
several streams of data. Most research focuses on detecting 
distinct, often geometrical features of a human, such as the 
shapes of their legs, arms, torso, and head. For example, 
ambulatory pedestrians are associated with features like shape, 
size, and dynamic movements that enable the detection and 
tracking of individuals and groups. However, these 
characteristics are not inclusive of all types of pedestrians that 
the robot would encounter, such as wheelchair users who do not 
have the same gait patterns as upright walkers. 

In classic 2D laser scan classification studies, objects of 
interest are segmented from the scan using jump distances 
between points, such that a consecutive segment of points at the 
same distance from the sensor are considered as a single object. 
A common method for classifying the object cluster is using a 
boosted classifier on the object features, such as AdaBoost [14], 
[17-19] and random forest [20]. Arras et al. [17] achieved 
detection rate of over 90% for their human leg detectors using 
geometric features. Similarly, but using their novel generic 
distance invariant features, Weinrich et al.’s [14] GANDALF 
detector uses AdaBoost to detect people with wheelchairs and 
walkers, achieving 86% classification accuracy of the mobility 
device.  

To improve performance over handcrafted classifiers, Beyer 
et al. [15] introduce the DROW detector, which applies 
unsupervised learning to 2D range data using a convolutional 
neural network (CNN). They classify people with mobility aids, 
outperforming GANDALF with higher precision and recall. In 
a follow up study [21], they extend their deep learning algorithm 
to include unaided people, relying on temporal data extracted 
from multiple frames to compensate for the sparseness of range 
data. More recently, Jia et al. [16] implements DR-SPAAM, an 
auto-regressive model with spatial attention that fuses 
information across scan frames with lower computation 
complexity than DROW. Zheng et al. [5] applies PointNet [22], 
a neural network for unordered point sets, to segmented laser 
scans. Also using deep learning, Vasquez et al. [9] and Kollmitz 
et al. [10] perform multi-class detection on people with mobility 
aids using image and depth data. 

B. Orientation Estimation 

Object orientation can be computed by either temporally 
tracking the object across multiple frames to estimate its 
direction of travel or classifying its orientation directly from a 
static frame of data. A combination of both methods is used by 
Ardiyanto et al. [23] for pedestrian tracking. Their algorithm 
directly predicts orientation when the object is static or slow 
moving. Similarly in this study, only information extracted from 
a single frame of data is used. This method does not rely on 
temporal information and guarantees performance when the 
wheelchair and robot are stationary. 

As far as we are aware, the only wheelchair orientation 
estimation study using external sensors is performed by Yang et 
al. [24], who use single perspective geometry from a static 
camera to regress the orientation of a manual wheelchair. They 

model orientation as a continuous mathematical relationship 
with the elliptical shape of the wheel projected on the image 
plane. However, orientation cannot be modelled like this using 
range data, as geometrical features of the wheels are not as 
apparent in laser scans.  

Estimating the orientation of upright humans is more 
prevalent. Glas et al. [25] uses a network of laser scanners to 
capture body contours, then fitting them with a parametric shape 
model to estimate their orientation. With a ubiquitous sensor 
network, they can construct the contours of the person in full. 
BačÍK et al. [26] uses CNNs on scans from a multi-layer LiDAR 
to estimate body orientation with an average error of 33.5°.  
However, no existing methods that estimate orientation using a 
standalone laser scanner were identified.   

The remaining methods for human orientation estimation 
pertain to the usage of image data from cameras. Lewandowski 
et al. [27] estimates upper body orientation continuously from 
RGBD images to the accuracy of about 5°. Others, Ardiyanto et 
al. [23], Ji et al. [28], Weinrich et al. [29], and Rybok et al. [30], 
classify orientation into discrete categories rather than as a 
regression. Although the format of image data is vastly different 
from range data, we employ a multi-class approach like these 
studies. We discretize orientation into incremental classes and 
classification is performed to predict the closest aligning 
orientation class. Studies reported in [23], [29] achieved multi-
class accuracy around 64% from images. Fusion between multi-
view cameras was able to improve the accuracy to 87.8% in [30], 
but this is not applicable to mobile robots, which are restricted 
to a single perspective setup. 

III. METHODS 

Fig. 1 shows an overview of the proposed pipeline for 
wheelchair detection and orientation estimation. Range data 
from the 2D laser scanner is pre-processed and segmented to 
identify object clusters. Object clusters are determined by the 
density of points rather than the jump distance between points, 
which benefits the sparser distribution of wheelchair clusters. 
Segmented objects are classified into wheelchairs or non-
wheelchairs, then only the detected wheelchairs are passed into 
the orientation classifier to determine the closest aligning 
orientation class. Examples of segmented wheelchair clusters in 
each orientation are shown in the figure next to depictions of the 
birds-eye view of a wheelchair user. 

A. Pre-Processing and Segmentation 

A scan frame consists of an array of points representing the 
distance from the sensor where each laser beam is interrupted. 
From this, we can construct a planar birds-eye-view of the 
contours of objects present at the height of the sensor. Given that 
the nature of laser beams is that they cannot penetrate through 
solid materials, only the closest side of solid objects is visible on 
the scan, and the depth of the objects is unknown. Manual 
wheelchairs are unique in this aspect because they have empty 
spaces between the wheel spokes, allowing some laser beams to 
pass through to interrupt at the far side. This allows the data 
points to fill out a sparse contour of the outline of the wheelchair. 
This feature helps distinguish wheelchairs from other solid 
objects even when the density of data points is sparse.   
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Traditionally, jump distance between points is used as a 
threshold for segmentation. However, since wheelchairs do not 
produce interruptions at the same distance in consecutive 
segments of points, a more thoughtful method is required to 
segment out wheelchairs as distinct clusters.  Through 
experimentation, it was determined that a density-based 
clustering algorithm is effective for this application. However, 
the presence of continuous and dense lines (produced by solid 
surfaces like walls) interferes with the segmentation of sparser 
objects, like wheelchairs. Hence, a line removing algorithm is 
implemented to eliminate consecutive segments of points that fit 
the parametric equation of a line with a residual error less than a 
hand-tuned threshold.  

DBSCAN, a density-based clustering algorithm that also 
eliminates outliers, is applied to the remaining points. The 
DBSCAN parameters ε, which controls the maximum 
inclusivity distance between a point and its closest cluster, and 
η, which specifies the minimum number of points in a cluster, 
are optimized for the dataset used. The segmentation of 
wheelchairs is prioritized such that the outer contours of the 
clusters are well preserved. Confirmed with visual inspection, 
nearly all wheelchairs were segmented out with little or no loss 
to the integrity of their shapes. 

B. Wheelchair Detection Model 

After segmentation, the list of labelled objects is passed into 
a binary classifier that separates wheelchairs from non-
wheelchairs without accounting for orientation. To standardize 
the size of the inputs, the coordinates of the points are mapped 
to a 100x100 pixel image. The scale of projection is determined 
by the size of the largest object, so that all objects retain their 
relative sizes after conversion. While it is possible to further 
extract features from the objects based on their dimensions, 
geometries, densities, and distributions, it was not attempted in 
this study since using the images directly achieved good 
outcomes.  

We compare the performances of neural networks and 
ensemble methods for classification. CNNs are used by [9-10], 

[15] for wheelchair detection using range data or RGBD data. 
CNNs convolve over an image and extracts information from 
pixel neighborhoods, making them ideal for image 
classification. However, since the input objects in this study are 
not complex like real images, a simpler artificial neural network 
(ANN Detection) is included for comparison. Two ensemble 
machine learning algorithms are used as well. Random forest 
(RF) used in [17], is a fast classifier that combines the 
predictions of multiple individual decision trees to limit model 
overfitting. The AdaBoost (AB) classifier is used in laser-based 
object classification [14], [17-19], [31-32]. Hyperparameters of 
the classifiers, such as the number of layers and neurons in the 
neural networks, are experimentally tuned on the dataset 
collected. All four classifiers and their parameters are listed in 
Tab. 1.  

K-fold cross-validation is implemented in the model training 
stage to reduce overfitting. This splits the data into a one-part 
validation set and K–1 part training set. The models are each 
trained K=4 times on all the data. A test set comprising of 10% 
of the input data is set aside from the training set. 

 

Fig. 1. Overview of the wheelchair orientation estimation algorithm: 1) scan frame of the 2D range data, 2) post-processed data with straight lines removed, 3) 
DBSCAN segmented, 4) classification on non-wheelchair and wheelchair clusters, and 5) samples of wheelchairs clusters in all orientation classes 

 

 

Fig. 2.  PowerBot platform with mounted 2D laser scanner 

20cm 
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TABLE I.  WHEELCHAIR DETECTION AND ORIENTATION ESTIMATION 

CLASSIFIERS PARAMETERS 

Stage Classifier Parameters 

Wheelchair 
detection 

ANN Detection  

Two hidden layers of 500 and 50 neurons 
with ReLU activation 

CNN  
Two hidden layers of 36 and 24 neurons 

with 3x3 kernel and ReLU activation. 

Random Forest 300 decision trees with no max-depth 

AdaBoost  300 decision trees with max-depth of 1 

Orientation 
estimation 

ANN Orientation 
Hidden layer of 200 neurons with ReLU 
activation and L2 regularization 

 

C. Orientation Estimation Model 

Wheelchair orientations are discretized into six classes: back 
facing, front facing, left 45° angled, right 45° angled, left side 
facing, and right side facing. The two back facing 45° angled 
orientations are excluded due to a lack of data. Orientations that 
mirrored each other (e.g., left/right and front/back) are 
purposefully differentiated from one another because knowing 
the direction is essential for trajectory estimation. Another 
neural network (ANN Orientation) is used with softmax at the output 
to achieve multi-class results. The network parameters also 
listed in Tab. 1. To prevent overfitting to the training data, L2-
regularization is applied. The model is trained with K-fold cross-
validation and evaluated on a 15% testing set. 

IV. EXPERIMENTS 

The experiment data was collected with a ROS-based 
PowerBot mobile robot platform, shown in Fig. 2. The 
PowerBot has a SICK LMS200 laser scanning sensor mounted 
to its base, which has a horizontal field-of-view of 180° at an 
angular resolution of 1° and a scanning frequency of 9 Hz. The 
scanner is optimized for indoor applications with a limit of 10-
meter optimal operational range, but the wheelchair should be 
within 4 meters of the sensor to preserve shape details. An 
additional challenge working with planar data is finding the 
height of the scanning plane that would return the most feature 
rich data. Heights of 23 cm and 40 cm were used by Weinrich et 
al. [14], but their choice is based on features specific to human 
legs. The default height of the lower ledge of the PowerBot 
platform was used, which is 20 cm above the ground. 

The experiment required a manual wheelchair to move 
through the field-of-view of the laser scanner. Data was captured 
for various wheelchair orientations and movements, including 
travelling in the direction towards the sensor, diagonal to the 
sensor, and fully orthogonal to the sensor. Fig. 3a depicts a 
MATLAB visualization of a wheelchair passing through the 
scanning field of the laser sensor. The red dots mark the center 
of the wheelchair as it travels along its path. Although the shown 
trajectory combines a compound of movements, which is 
emulative of real-world scenarios, this study simplifies the 
trajectory to single DOF movements for the ease of labelling. 
Fig. 3b shows a frame of the range data collected in the 
experiment, overlaid with a depiction of the room contour, 
objects, and the wheelchair user. 

Two indoor spaces were identified for data collection. Both 
environments were spacious and relatively uncluttered to allow 
free movement, but not without a lack of props like tables, 

chairs, and boxes. A standard manual wheelchair operated by a 
human was used. In total, fourteen locations for the wheelchair 
were strategically chosen at different distances and radial 
positions with respect to the PowerBot and sensor. Some 
positions were selected near walls or other objects to test if the 
algorithm can segment out the wheelchair in less ideal 
environments. The locations were recorded such that segmented 
object clusters can be automatically labelled as wheelchairs if 
their centroid coincides with the pre-set coordinates. The ground 
truth dataset was constructed this way, and later verified by 
visual inspection. Data was recorded using rosbag then 
transferred offline for analysis. 

V. RESULTS 

A. Wheelchair Detection 

Fifty trial comprising 10 to 200 data frames each were 
conducted, yielding 10,818 labelled objects. About 25% (2694) 
are wheelchairs and 75% (8124) are miscellaneous objects, 
furniture, wall segments, or columns. Tab. 2 shows the 
computation time, training accuracy, and test accuracy from the 
four classifiers (ANN Detection, CNN, RF, and AB). Fig. 4a shows 
each classifier's ROC curves, which represents the 
discrimination threshold of the algorithm. 

 

(a) Simulated path of a wheelchair through the laser sensor field 

 

(b) Diagram of the room objects and wheelchair overlaid on range data from 
the laser sensor 

Figure 3. Simulated and real range data collected with the wheelchair 
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The ANN Detection, CNN, and random forest achieved similar 
accuracies, whereas AdaBoost performed significantly worse. In 
terms of runtime, random forest outperformed the others, with 
CNN being the slowest. Random forest also saw the most 
consistent training and testing accuracy, which means that the 
model performs well on generalized data outside the training set. 
This is not surprising as random forest is a proven classifier for 
large datasets with high dimensionality and is not prone to 
model overfitting. 

Tab. 3 shows the confusion matrix, precision, recall, and 
weighted F1-score of the random forest, where [0] represents 
non-wheelchair and [1] represents wheelchair. The rows 
represent the ground truth, and the columns represent the 
predicted class. The weighted F1-score was computed with the 
micro-averaging method, which accounts for the contribution 
from each class according to sample size, giving a useful metric 
for imbalanced datasets. The true positive rate of wheelchair 
detection using random forest is 98.1%. However, the precision 
for wheelchair is noticeably lower than non-wheelchair, which 
indicates that the false positive rate of the classifier is also high, 
so some non-wheelchair objects will be passed into the 
orientation classifier. Although not desirable, the impact of this 
is better than having a high false negative rate, which would 
result in more missed wheelchairs. 

TABLE II.  WHEELCHAIR DETECTION AND ORIENTATION ESTIMATION 

CLASSIFIERS PERFORMANCE 

Classifier Time/Sample 
Training 

Accuracy 

Testing 

Accuracy 

ANN Detection
 750 μs 99.14 ± 1.0% 97.50% 

CNN 64 ms 99.16 ± 0.74% 97.60% 

RF 160 μs 98.10 ± 0.29% 98.10% 

AB 1.8 ms 96.58 ± 0.38% 96.02% 

ANN Orientation 970 μs 89.0 ± 2.2% 87.6% 

TABLE III.  CONFUSION MATRIX, PRECISION, RECALL, AND F1-SCORE FOR 

WHEELCHAIR DETECTION WITH RF 

 0 1 Precision 

0 98.2%  1.8%  0.99 

1 1.9%  98.1%  0.94 

Recall 0.98 0.98 F1w: 0.98 

TABLE IV.  WHEELCHAIR ORIENTATION CLASS DISTRIBUTION 

Class # 0 1 2 3 4 5 

Class 

Name 
Back Front 

Left 
45° 

Right 
45° 

Left 
Side 

Right 
Side 

# 308 960 446 293 338 329 

% 11.5% 35.9% 16.7% 10.9% 12.6% 12.3% 

TABLE V.  CONFUSION MATRIX, PRECISION, RECALL, AND F1 FOR 

ORIENTATION ESTIMATION WITH ANN 
ORIENTATION 

 0 1 2 3 4 5 Precision 

0 88% 10% 2% 0% 0% 0% 0.93 

1 0% 96% 4% 0% 0% 0% 0.88 

2 5% 14% 80% 1% 0% 0% 0.75 

3 0% 3% 3% 77% 3% 13% 0.82 

4 0% 14% 4% 5% 77% 0% 0.96 

5 0% 0% 10% 1% 0% 89% 0.93 

Recall 0.88 0.96 0.79 0.77 0.79 0.89 F1w: 0.88 

 
 The most comparable study [14], which uses range data for 
wheelchair detection, achieves a true positive rate of around 
92%. However, it should be noted that their study detects 
humans, wheelchairs, and walkers, so the complexity of 
classification is higher. The laser scanner they use has a finer 
angular resolution at 0.5°, so they retain more object detail. They 
also recorded their data from a rehabilitation center, which 
contained twice the number of wheelchairs, which indicates that 
their results could be more robust to real-world conditions. 

B. Orientation Estimation 

Labelled wheelchair clusters, with Tab. 4 showing the 
distribution by class, are passed into the orientation classifier 
ANN Orientation. The bottom row of Tab. 2 shows the runtime, 
training accuracy, and testing accuracy. Tab. 5 shows the 
precision and recall for each class, as well as the micro-
averaged, weighted F1-score.  Fig. 4b shows the ROC curves for 
each class and the micro- and macro-averaged curves. Front 
facing wheelchairs had the most samples, slightly unbalancing 
the dataset in its favor. The classifier also often predicted in 

 
a) ROC curves of the evaluated wheelchair detection classifiers. 

 
b) ROC curves of orientation classification by class 

Fig. 4.  ROC curves of detection and orientation estimation models 
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favor of the front facing class, giving it the highest recall. The 
bias toward the class is also evidenced by the ROC curves. In 
contrast, the left and right 45° classes had the lowest precision 
and recall scores.  

Compounding the results of the best performing classifier in 
the first step, the random forest, with the ANN Orientation gives the 
overall accuracy of 85.9% for predicting the orientation of a 
wheelchair. The implications of misclassifying orientation 
primarily affect wheelchair state estimation and trajectory 
prediction. Sporadic misclassifications can be tolerated through 
applying a Kalman filter to estimating the state (position, 
orientation, and velocity) of a moving wheelchair.  

Our results are comparable to other orientation classification 
studies [23], [29-30] that discretized orientations into 
incremental classes, albeit using image data instead of laser. 
Ardiyanto et al. [23] use a monocular camera mounted to a 
moving robotic platform and split orientations into eight classes 
at 45° increments. They achieve an accuracy rate of 64% using 
random forest. Weinrich et al. [29] use a monocular camera and 
the same eight classes of orientation. Their support vector 
machine (SVM) model achieved 64% accuracy. Rybok et al. 
[30] use a multi-camera approach and divide orientation into 
twelve classes at 30° increments. They use a nearest mean 
classifier to predict orientation from each camera, then fuse the 
results using a Bayesian filter, achieving 87.8%. 

C. Limitations 

A major limitation of the classifier comes from the coarse 
discretization process. What orientation class does an in-
between angle like 22° belong to? When labelling the data, all 
segmented wheelchair candidates were rounded to their closest 
orientation category. Thus, at orientation class boundaries (such 
as 22°), nearly identical data clusters would be present in both 
the front facing and 45° angled classes, introducing ambiguity 
in the ground truth. Misclassifications on in-between 
orientations should perhaps be weighed less heavily than 
misclassifications on more obvious orientations, or otherwise a 
regression approach can be considered. Overall, variations in the 
discretization bin sizes should be further explored to 
characterize the trade-off between the angular precision of the 
estimation and the accuracy of the orientation class prediction. 

VI. CONCLUSIONS 

This study presents a method for wheelchair detection and 
orientation estimation for mobile robotics, which creates a 
foundation for robust wheelchair state estimation. Using only 
2D range data from a standalone laser scanning sensor mounted 
to a mobile robot, the experimental set-up can be easily recreated 
with other autonomous robots deployed in real-life settings. 
Follow-up works can include investigating the online 
performance of the algorithm in experiments with human 
participants.  

As a pre-processing step for the inputs to the classification 
algorithm, we found it effective to use density-based clustering 
to segment out objects from the range data. Wheelchair 
candidate objects are identified using a random forest classifier, 
then passed into a multi-class orientation estimation neural 
network. Combining the two steps, the orientation classification 
achieves an accuracy of 86% at test time. The proposed model 

was tested with a physical mobile robot and it was verified that 
the algorithm performs well in cluttered environments that are 
reflective of real-world conditions. The outcomes of this 
research can inform future works in building a real-time 
wheelchair detection and trajectory prediction for mobile robots, 
a further step towards achieving safe and effective human-robot 
interactions for vulnerable pedestrian groups. 
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