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Abstract
While LLMs are often touted as tools for democratizing specialized
knowledge to beginners, their actual effectiveness for improving
task performance and learning is still an open question. It is known
that novices engage with LLMs differently from experts, with prior
studies reporting meta-cognitive pitfalls that affect novices’ ability
to verify outputs and prompt effectively. We focus on a task domain,
machine learning (ML), which embodies both high complexity and
low verifiability to understand the impact of LLM assistance on
novices. Provided a buggy ML script and open access to ChatGPT,
we conduct a formative study with eight novice ML engineers to
understand their reliance on, interactions with, and perceptions
of the LLM. We find that user actions can be roughly categorized
into leading the LLM and led-by the LLM, and further investigate
how they affect reliance outcomes like over- and under-reliance.
These results have implications on novices’ cognitive engagement
in LLM-assisted tasks and potential negative effects on downstream
learning. Lastly, we pose potential augmentations to the novice-
LLM interaction paradigm to promote cognitive engagement.
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• Human-centered computing→ Empirical studies in HCI.
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1 Introduction
Large Language Models (LLMs) have shown remarkable ability to
achieve exemplary performance in a variety of tasks, including
coding, writing, and standardized tests [14, 33]. However, their
effectiveness in adapting to diverse end-users, ranging in their
abilities in the task, still has room for improvement [11, 12, 17,
20]. In the idealized human-LLM collaboration scenario, assistance
provided by LLMs should not only help with automating manual
work, but also democratizes access to task-specific knowledge for
novices and laypeople [29]. Despite these aspirational goals, this
partnership breaks down when the users — who are supposed to
be in charge — are not actually experts in the tasks. For example,
prior research in the LLM-assisted coding domain has documented
the meta-cognitive struggles that novices face in prompting and
verifying LLMs, leading to ‘rabbitholes’ of over-reliance [15, 17, 21,
22, 27].

We hypothesize that novice-LLM communication barriers in-
crease in tasks involving highly complex relationships. In domains
where the solution is not as easily verifiable as an introductory
programming assignment, people must remain cognitively engaged
in the task even whilst working alongside powerful LLM partners.
To give a concrete example, machine learning (ML) is such a domain
where the relationship between input hyperparameters and output
metrics is not easily predictable [1, 16]. There is not one direct path
towards the optimal solution, but a complex and iterative process
that involves constant verification [3, 4, 19]. Expert implementers
can apply their learned domain-specific ML diagnostic skills, but
novices lack this [2, 24, 30]. This opens up a space for LLMs to lend
support to novices [3, 9].

In this paper, we investigate what problems ML novices, with
poor mental models and little implementation experience, face in
an LLM-assisted workflow. We conduct a formative study with
eight participants to understand how they rely on ChatGPT in a
challenging ML debugging task. We identify two types of reliance
actions (leading and being led-by the LLM) that result in different
reliance outcomes, including different categories of usage errors.
Our results suggest that even among novices, prior ML skill levels
may correlate with reliance actions and task performance. We pose
discussion around the broader consequences of using LLMs to
scaffold novices’ learning, and how the novice-LLM interaction
framework can be augmented to improve novices’ mental models
and prevent over-reliance on suboptimal LLM responses.
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2 Formative Study
We conducted an in-person formative study at a research university
in Canada. We recruited eight participants from the undergraduate
and graduate student body through Slack channels and word-of-
mouth. Participants were asked to self-filter for their level of exper-
tise in ML, using the guideline that they should be “familiar with
implementing machine learning models but not an expert, such as if
you have taken an introductory course to machine learning or you are
self-taught and have implemented ML projects". Participants are told
that they would be debugging a faulty machine learning script with
the help of ChatGPT, while thinking aloud about their process. The
study time was 60 minutes and participants were compensated $20
CAD (approximately $14.80 USD at the time of the study) for their
participation. All study procedures are approved by the Research
Ethics Board at the institution.

2.1 ML Debugging Task
While there are many complex LLM-assisted tasks that we can
consider, ML debugging is unique for several reasons. With the
growing popularity of machine learning and AI in the mainstream,
more and more hobbyists and workers without formal education or
training are learning ML implementation [8]. As such, the ubiquity
of this growing group of ML novices makes this domain novel and
impactful to examine.

Furthermore, ML debugging is also unique from code debugging,
where the latter is a more structured process that tends to have
a one-to-one mapping of problems and solutions. Code fixes are
also generally directly verifiable through compilation and passing
unit tests. Conversely, issues in ML code can compound together
and interact [19]. The solution is also harder to verify, as the ideal
performance of a model on a dataset is usually not known. To suc-
cessfully solve them, it can involve incorporating both conceptual
knowledge and looking at empirical impacts on the performance
to make adjustments to the ML code. This requires a robust mental
model of ML debugging, including a) diagnosing the cause(s), b)
identifying potential solutions, and c) validating the improvement
in performance. For a novice without sufficient expertise, this can
be very challenging and warrants assistance.

For the experiment, we develop a simple ML training script using
the UCI Adult Income dataset [6], with the task of predicting if a
person is high income (𝑦 = 1) or not (𝑦 = 0). The code, written with
Python libraries in a Google Colab, includes processing the data,
creating the train/test datasets, fitting a scikit-learn Random
Forest (RF) classifier, and evaluating the performance (F1 score and
other metrics). We artificially introduce three problems into the
code that would cause noticeable performance degradations on the
test performance, see Table 1 for their details and solutions. E1
and E2 reflect ‘code bugs’, while E3 is a result of the distribution
of the dataset. The participant is not required to solve the errors
using the provided solutions, as we accept any attempts at applying
conceptually sound methods to correctly-identified problems.

2.2 Study Procedure
In the Pre-Task, participants filled out a survey to self-rate their
experience with machine learning and using LLMs, as well as five

Table 1: Summary of the three problems introduced in the
machine learning debugging task and their solutions.

ID Error Description Example Solution

E1
Overfitting of the Random For-
est model due to complexity hy-
perparameters not being set.

Limit model complexity
hyperparameters, such
as max_depth=5.

E2
Data distribution shift due to the
training/test datasets being un-
shuffled when split.

Set shuffle=True in
train_test_split().

E3
Data imbalance in the dataset
which causes poor performance
in the minority class.

Set model parameter
class_weight =
balanced, or resample
data with SMOTE.

knowledge-based multiple-choice questions on basic machine learn-
ing concepts — this is to estimate their actual abilities for the task,
as self-reports may be biased.

At the start of the Main Task, participants were shown a tu-
torial demonstrating the think-aloud protocol if they weren’t al-
ready familiar with it. They then received an explanation of the
machine learning code and the objective of finding and fixing errors,
although they were not told the total number of errors or what
metrics they should focus on. They were given free reign to use
ChatGPT 4o-mini1 to complete the task. The participants’ work-
flows and queries were closely monitored and recorded by screen
and audio. After the session, their modified code is scored on held
out dataset and the number of problems they fixed were counted.
Their transcripts with ChatGPT were also saved for further analysis.

In the Post-Task survey, participants rated their experience
using ChatGPT for the task and any perceived improvements in
their ML skills on a 7-point Likert scale. Some of the subjective per-
ception questions are adapted from the UMUX questionnaire [13].
Lastly, participants answered semi-structured interview questions,
focusing on topics such as their strategy for using ChatGPT when
debugging, the quality of their workflow, and what an ideal ML
debugging tool might look like.

3 Results
We describe our findings in terms of task performance, workflows
(reliance actions and outcomes), and subjective perceptions.

3.1 Task Performance
Our analysis first examines the participants’ ChatGPT-assisted per-
formance in correcting the errors. Everyone identified and solved
(or attempted to solve) at least one problem, with four participants
solving two, and two participants solving all three. The best possible
F1 score on the holdout dataset using an RF model is around 0.32, as
experimentally determined by the research team. The participants
achieved scores ranging 0-0.28, with 0.16 being the performance
of the unmodified code. Due to the sensitivity of ML code, it was
possible to implement a partial solution but still severely degenerate
the performance.
1We use themini version as it was available on free accounts and we did not necessarily
require a state-of-art model for the study.
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Interestingly, we find that participants’ holdout F1 scores are
correlated to their performance on the initial ML knowledge quiz
(but not their self-reported ML experience), with Pearson’s 𝑟 = .93,
𝑝 < .001. As we have a small number of participants, we do not
assign any strong implications to these results. However, taken
together with prior research, this suggests that less skilled users
struggle with using LLMs to accelerate their implementation. For a
task as complex as machine learning, strong mental models of the
domain is necessary to appropriately oversee ChatGPT’s outputs.

3.2 Reliance Actions and Outcomes
While ChatGPT helped everyone to some extent, we observed that
participants’ reliance actions and outcomes had some important
differences. We define the relevant terms as follows:

(1) RelianceAction:This describes how the participantworked
with the LLM – either they were leading the LLM through
asking specific, and planned-out questions; or they were led-
by the LLM by asking open-ended questions and following
the LLM’s suggestions. While subtle, this separates who (the
user, or the LLM) is the primary driver of debugging. This
dichotomy of behaviour is related to the acceleration vs explo-
ration paradigm defined by Barke et al. and the shepherding
vs drifting behaviour documented by Prather et al..

(2) Reliance Outcome: Using the Appropriate Reliance frame-
work [7, 23], we define four categories of outcomes in terms
of if the user relied on the LLM and if they made the correct
decision – Rely on self (when the LLM is wrong), Rely on
LLM (when the LLM is correct), Over-rely (relying on LLM
when it is wrong), and Under-rely (not relying on LLM when
it is right). The first two demonstrate correct reliance, while
the latter two are incorrect reliance.

Reliance Actions were coded for each conversation turn be-
tween the participant and ChatGPT, informed by notes and audio
transcripts taken during the study session. For example, a leading
participant independently hypothesized the causes of an error and
asked, “What are the most important hyper parameters for Random
Forest?"; while a led-by participant queried, “What is wrong with this
code?" and verbalized they were unsure of how to start. Reliance
Outcomes were coded based on what the participant did with
ChatGPT’s response — either applying the suggestions or moving
on. A simplified diagram of the participants workflows is shown as
Figure 1. For each participant, the top bar indicates their reliance
actions, and the bottom bar indicates the outcomes.

Participants who asked for general guidance (led-by) and shifted
the workload to ChatGPT generally performed worse than partici-
pants who used ChatGPT deliberately to support their debugging
plans (leading). Four of the five top scorers on the holdout dataset
were leading ChatGPT in half or more of the conversation turns
(P3, P4, P7, and P8). Qualitatively, we observe that under-reliance
occurred more when the participants were controlling the debug-
ging; while over-reliance is more frequent when the participant
blindly followed the LLM. This is likely explained by less expe-
rienced novices lacking relevant knowledge to drive decisions in
the task. We also note that amongst the led-by participants, some
seemed primarily driven by their high trust in ChatGPT – such as
P5 and P6 who presented as power LLM users.

1 18Number of Conversation Turns

P1

P2

P3

P4

P5

P6

P7

P8

1716152 43

Led by LLM Leading LLM

Rely on Self

Over-relyUnder-rely

Rely on LLM

Reliance Actions

Reliance Outcomes

Figure 1: Workflow analysis for each participant with re-
liance outcomes (top bar) and corresponding LLM actions
(bottom bar). To disambiguate between the leading/led-by
paradigm, the reliance outcome colours when the user lead
the LLM are more saturated than when led-by the LLM.

There are novice-specific factors that degraded interactions with
ChatGPT. We label several types of meta-cognitive errors related
to how a lack of robust mental models interacts with the compliant
nature of LLMs:

• Leading Query: Participants who know what they want
to explore often inject ‘leads’ into their queries, which was
problematic if the idea was wrong — such as, “Give me the
code for feature standardization", where standardization is not
necessary for RF models. ChatGPT would provide the code
and lead the participant into an unnecessary over-reliance.

• Filtering: When asked broad questions, ChatGPT would
generate a long list of potential solutions (sometimes more
than 10 items). This was very difficult for users to filter
through in the time constraint of the task, and sometimes
lead to under-reliance.

• Verification: Even if the participant identifies the correct
actions to take and ChatGPT provides reasonable advice,
small differences in the suggestions can drastically impact
the outcome. P8 spent significant time searching for the best
RF hyperparameter values without success because Chat-
GPT’s suggested values were not optimal for the dataset.
More generally, many participants exhibited difficulty with
understanding which ML metrics to pay attention to (train-
ing vs testing performance; accuracy vs F1 score) and had a
hard time with communicating changes in performance to
ChatGPT.

3.3 Subjective Perceptions
Despite the difficulty of the task, overall perceptions of ChatGPT’s
ability to aid in the task are positive based on the post-task survey.
All participants indicated they believed they learned something
through using ChatGPT, although their confidence in their ML de-
bugging skills did not improve. Based on interview results, learning
mostly referred to low-level and syntactic information – such as
the hyperparameters in an RF model – not mental models of ML
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debugging. Perceived usability and success with prompting is more
mixed, and several participants indicated in the post interview that
they would take different prompting strategies (like adding context
and specificity) if they were to redo the task (P1, P2, P4, P5, P8).

In terms of the generated content, participants commented that
ChatGPT’s responses were too broad and lacked context (P1, P2,
P7) and the amount of information is overwhelming to filter (P3,
P8) – signaling cognitive overload. However, many also liked that
ChatGPT is more selective than Google Search, which helped them
find relevant information more efficiently (P3, P6, P7). Some indi-
cated they would like to see suggestions of common errors to debug
as a general guideline (P3, P4). P6, who was the only one who faced
issues with running the ChatGPT generated code, wanted verifi-
cation that the syntax can compile. These perception demonstrate
the potential for ChatGPT to guide users in complex tasks, but also
the some shortcomings of vanilla ChatGPT’s interaction strategies
for task novices.

4 Discussion
4.1 Key Findings
We present the preliminary findings of novice-LLM workflows
in a highly challenging task with high requirements for domain
knowledge – machine learning debugging. Participants who were
successful in the task tended to have better mental models and
were able to lead the debugging process, while less experienced
participants were more likely to delegate the bulk of the work
and be led-by ChatGPT. We also identify some interesting modes
of interaction failure. When asked open-ended queries, ChatGPT
would present a breadth of ideas but not pinpoint the most salient
suggestions, leading to cognitive overload and under-reliance. On
the other hand, users with incorrect hypotheses about the task
asked poorly phrased queries to ChatGPT, leading to ‘rabbitholes’
of over-reliance on irrelevant advice.

4.2 Implications on Cognition
Designing LLMs to collaborate with novices is challenging in many
ways. The interactions between the user’s meta-cognition, mental
models, and the LLM’s behaviour can result in various pitfalls, some
of which were documented in the study. While an expert may be
able to leverage the LLM using precise prompting and seasoned
verification skills to automate the task, we observed that novices
struggledwith both aspects of task performance and learning. There
may even be further tensions between optimizing the debugging
task performance and having the novice user meaningfully engage
and lead the task — as in, even when novices are engaged, their
faulty mental models of the task can be reinforced through the
LLM’s sycophancy, resulting in poor learning outcomes. Beyond
in-task over-reliance errors, the reduction of high-quality learning
in the long term, especially without proper educational scaffolding,
is a key concern in novice-LLM interactions.

An important question posed for future research is how the LLM
interaction paradigm can be augmented to correctly engage novice
users whomay have insufficient experience or even incorrect beliefs
about the task they are working on. Could LLMs that generate
satisficing solutions lead to a culture of novice implementers with
poor understanding of how and why the solution was constructed?

Will there be downstream effects of improper reliance on LLMs
in the educational context, where students bypass foundational
learning or are reinforced with bad mental models? We propose
some ways to improve novice-LLM interactions in the next section.

4.3 Improving Novice-LLM Interactions
We suggest some ways for how novice-LLM interactions can be
augmented to avoid the pitfalls observed in our study. We divide
these ideas based on which side of the conversation they take effect:

(1) LLM-side improvement: ChatGPT’s propensity to answer
questions complacently and agreeably, even if the user’s
questions are uninformed, made it a bad guide for novices.
Sycophancy, a trait that is learned through training by rein-
forcement learning on human feedback, describes how LLMs
would align themselves to reflect the users beliefs, even if
the beliefs are incorrect [25]. While we did not observe out-
landishly sycophantic statements, ChatGPT was not firm
with correcting users’ faulty mental models and was overall
ineffective at helping novices improve their task knowledge.
Adapting LLMs to be more proactive in correcting user’s
faulty assumptions can help steer novices onto the right
track and engage in appropriate reflection to form correct
hypotheses in the future.

(2) User-side improvement: Users also face challenges as a
result of struggling to articulate their intent in their prompts
[26, 31]. Some of the participants in the study also expressed
wanting to see examples of good queries. Given that we
conducted the experiment with mostly Computer Science
students, who should have higher technical expertise and
AI literacy than the general public, we expect that lay users
would need even more support. Providing a tutorial of ap-
propriate usage and effective prompting strategies may help
user ask higher quality questions and guide them away from
being led into over-reliance [18].

(3) Bidirectional improvement: Given that both the user and
LLM participate in the conversation, improvements can be
made from both sides, iteratively. Since the mental model
of a novice can be highly flawed due to lack of information,
incorrect information, or incorrect understanding of pro-
cesses, it would benefit the LLM to customize its response
to tackle these misconceptions [10]. Mutual theory of mind
is a cognitive psychology construct that has been explored
in the LLM space, describes the ability of humans to infer
what information another person knows. It has been ap-
plied as a framework to improving trust and perceptions in
human-LLM collaboration tasks [28, 32].

We propose these directions for the research community as ways
to improve interactions between novices and their LLM assistants,
with a focus on reducing over-reliance, enhancing cognitive en-
gagement, and improving mental models of the task.
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