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ABSTRACT
Many explainable AI (XAI) techniques strive for interpretability
by providing concise salient information, such as sparse linear
factors. However, users either only see inaccurate global explana-
tions, or highly-varying local explanations. We propose to provide
more detailed explanations by leveraging the human cognitive ca-
pacity to accumulate knowledge by incrementally receiving more
details. Focusing on linear factor explanations (factors × values =
outcome), we introduce Incremental XAI to automatically partition
explanations for general and atypical instances by providing Base +
Incremental factors to help users read and remember more faithful
explanations. Memorability is improved by reusing base factors
and reducing the number of factors shown in atypical cases. In
modeling, formative, and summative user studies, we evaluated the
faithfulness, memorability and understandability of Incremental
XAI against baseline explanation methods. This work contributes
towards more usable explanation that users can better ingrain to
facilitate intuitive engagement with AI.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
As Artificial Intelligence (AI) systems become prevalent, it is para-
mount for explainable AI (XAI) to be developed to support their
proper use and understanding [1, 3, 4, 33, 38, 55]. Although much
work has shown that XAI can improve satisfaction and trust [26,
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33, 41, 45, 60], many studies have failed to demonstrate measurably
improved understanding [24, 48]. This requires users to ingrain AI
explanations to quickly recall and apply the knowledge for decision
making. Providing short explanations like sparse linear models
could help, but these would be too simplified to be faithful to the
complex underlying AI decision, and mislead users [45]. In contrast,
more expressive explanations may be more faithful, but can be chal-
lenging to read or recall [2], hindering their accessibility. This is
especially important for users to generalize their understanding of
AI behavior for future scenarios [44]. Hence, XAI needs to be suffi-
ciently detailed, yet memorable to support effective understanding.

To help users develop a richer understanding of AI models, in-
stead of inundating users with complex explanations, we propose
to explain incrementally. This is inspired from pedagogy, where
students learn a concept gradually rather than all-at-once. For ex-
ample, physics students learn about classical Newtonian mechanics
for objects moving at common speeds, but later learn the theory of
Special Relativity that describes objects at very high speeds with
the Lorentz transformation. Understanding relativistic mechanics
is very complicated and requires the foundational understanding of
classical mechanics first. Thus, we argue that users can eventually
understand complex explanations and models, but they should be
grounded on simpler explanations, and incrementally informed.

We propose a step towards elevating user understanding towards
complex AI explanations with Incremental XAI. This framework
defines how to explain AI predictions from typical cases to out-
lier cases. We investigate this for simple surrogate explanation
models, specifically, sparse linear explanations that describe linear
factors that multiply against feature values. For example, a factor of
𝑤 (Bathrooms) = $17k explains the predicted price of a house based on
# Bathrooms by indicating that each bathroom adds $17k, and that
two bathrooms would contribute $34k together. We begin with par-
titioning the dataset into subspaces, training a linear model in the
majority (typical) subspace with Base factors, and training a linear
model in the minority (outlier) subspace with (Base + Incremental)
factors. To minimize new information to learn, we regularize the In-
cremental factors to be 0 when possible. In our bathrooms example,
the majority smaller houses could have a rate of $17k/bathroom,
while minority larger houses can have costlier bathrooms at $17k +
$51k, perhaps due to luxury fittings. We contribute:

• The Incremental XAI paradigm which enables gradual deliv-
ery of complex explanations, gaining the benefit of multiple
lightweight explanations that achieves higher faithfulness.

• A tree-based incremental explanation using linear model trees,
additive factors, and factor sparsity regularization. We also de-
veloped a tabular user interface to convey explanations incre-
mentally, and contrasted this with baseline variants.
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• An evaluation of the faithfulness, usage, understanding, and
memorability of Incremental explanations against Global, Sub-
global, and Local baseline explanations in modeling, formative,
and summative user studies. We compared Incremental explana-
tions with Global explanations to evaluate if providing more de-
tailed explanations based on category of cases (subspaces) helps
understanding, with Subglobal explanations that are a baseline
subspace model that explains each subspace independently, and
with Local explanations since they are often singularly deployed
primarily for instance-based explanations, but may be misused
for general understanding.

• A discussion of how to generalize the Incremental XAI paradigm
to other applications and AI explanations.

2 BACKGROUND AND RELATEDWORK
Explainable AI (XAI) remains problematic for human interpretation
due to the inaccuracy of overly simplified methods. Here, we give
a primer on XAI and and their cognitive demands, techniques to
mitigate cognitive load, the need to provide multiple explanations,
and XAI techniques partitioned into subspaces to improve accuracy.

2.1 Surrogate explanations of AI
Explanations of AI can improve user understanding by providing
surrogate explanations of accurate AI models, or making "glassbox"
models that are intrinsically interpretable. However, the latter ap-
proach may have limited accuracy since these models tend to be
overly simple. Instead, we focus on providing surrogate explanation
models that approximate complex AI models that retains the use of
accurate AI models while explaining with some unfaithfulness.

Miller [44] identified two goals for explanations in AI: i) to select
a small set of causes for an observation [39], and ii) generalize
observations into a conceptual model to predict and control future
cases [22]. Wang et al. identified other reasoning processes that
XAI should support [63]. Our research objective is to improve XAI
techniques to better support the second goal of a generalized under-
standing. This requires explanations to be intuitive and memorable
so that users can rapidly apply their knowledge to anticipate the AI
model’s behavior in future settings. Global explanations provide a
suitable basis to support this goal. They answer the question “How
does the AI model make predictions?” Techniques include explain-
ing the AI decision in terms of linear factors [48], nonlinear partial
dependence plots [27] and generalized additive models [2, 12], and
decision trees [49] and rules [29, 32, 52].

To support the former goal of explaining causes for an individual
case, instance explanations are provided instead. These answer the
question: “Why did the AI model make this prediction?” Techniques
include feature attributions [5, 15, 42, 59], and counterfactual expla-
nations [11, 62]. An instance explanation only explains the decision
for a target instance and may provide a different explanation for
another instance; thus it may not generalize to multiple instances.
To overcome this, Ribeiro et al. proposed local explanations to train
explainer models on instances similar to the target instance of
interest [51]. Since these explanations focus on narrower sets of in-
stances, they are more faithful to the underlying AI being explained,
but require users to remember manymodels for dissimilar instances.

Given their ubiquity in XAI practice, we include them in our in-
vestigations. In this work, we aim to provide explanations that are
memorable like Global explanations and faithful like Local expla-
nations, investigated Subglobal explanations that balance between
the two, and proposed Incremental explanations that improve the
memorability of Subglobal explanations.

2.2 Cognitive demands of AI Explanations
Although XAI aims to improve user understanding, they are not
necessarily easy for users to interpret [34]. High cognitive load
harms user experience and the effectiveness of AI explanations
[28, 48]. This is often measured by the number of attributes used in
explanations [16] or the nonlinearity of visualizations [2]. Indeed,
people consider simpler explanations as more probable than those
with more clauses [40], but oversimplifying explanations will erode
trust in XAI [47, 67]. Explanations need to be delivered at the right
level of cognitive effort to be effective [20, 25, 31, 58].

A simple method to get users to understand explanations is to
prompt users to think when reading explanations [10], but this does
not ensure deep learning and understanding or make explanations
less cognitively demanding. Several techniques have been proposed
to reduce cognitive load. The most common is to do feature re-
duction to limit the number of attributes shown to users. This can
be accomplished with sparsity regularization [45] and constrain-
ing explanations to use integer coefficients instead of real num-
bers [61]. However, this limits the expressiveness of explanations
that users could consume. Another approach is to simplify more
sophisticated visual explanations, such as nonlinear line graphs.
Cognitive-optimized GAM (COGAM) balances cognitive load and
accuracy by quantifying the visual cognitive chunks in line chart
explanations, and providing a hybrid explanation with sparse linear
factors and less curvy line charts [2]. However, these approaches
only optimize one explanation at a time, but neglects the human
cognitive capacity to accumulate knowledge.

2.3 Providing multiple AI explanations
Accurate understanding of an AI system requires detailed knowl-
edge of its parameters and non-linear decisions, yet explanations
need to be simple for easy comprehended. To avoid information
overload, detailed explanations can be provided on demand [36] or
with progressive disclosure [58]. Users have various demands for
explanations [35], diverse usage strategies of explanations [36], and
use multifaceted explanations to understand AI decisions [37, 66].

Hence, instead of considering XAI interpretation as independent
interactions, it should be considered as sequentially dependent accu-
mulation of knowledge (e.g., dialogic [44]). People use explanations
to build a mental model of the AI, so successful explanations can
be measured through the goodness of the learned mental model
[33, 65]. Mental models play a key role in human-AI interactions [6],
but can be formed poorly without intervention [18]. In this work,
we propose a new paradigm of providing explanations incremen-
tally by ensuring that the shallower, simpler and explanations can
smoothly transition into deeper, more detailed ones. This leverages
the human ability for cumulative learning [57], and allows users to
understand how the explanations relate [68] at different levels.
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Figure 1: Conceptual examples of XAI types with univariate (1D) data shown for simplicity; see Fig. A.1 for 2D multivariate
examples with real data. a) Original AI System predicts output 𝑦 non-linearly with respect to attribute 𝑥𝑟 . b) Global explainer
that approximates 𝑦 with a linear equation 𝑦𝑔 ∝ 𝑥𝑟 . c) Subglobal explainer increases faithfulness by segmenting along 𝑥𝑟 to
provide multiple linear explanations 𝑦𝑠1 ∝ 𝑥𝑟 , 𝑥𝑟 < 𝜒𝑟 and 𝑦𝑠2 ∝ 𝑥𝑟 , 𝑥𝑟 ≥ 𝜒𝑟 . d) Incremental explainer that is similar to Subglobal,
but first explains with a linear model 𝑦𝑖0 ∝ 𝑥𝑟 the contiguous majority of instances (in this case, 𝑥𝑟 < 𝜒𝑟 ), then explains outlier
instances (𝑥𝑟 ≥ 𝜒𝑟 ) with an additive linear model 𝑦𝑖0 + Δ𝑦Δ𝑖 . e) Local explanation explains each instance with a linear equation
𝑦𝑙 ∝ 𝑥𝑟 based on neighboring instances. Multiple local explanations are needed to represent the full input space.

Table 1: Comparison of linear explanation models with varying faithfulness and memorability due to the # factors used, which
affects their expressiveness and the # terms for the user to remember. The AI System typically has too many factors to be
interpretable, while sparse linear explanations consider a sparse set of 𝑛 factors. A Global explanation and Local explanation
have 1 set of 𝑛 factors, but the latter requires many 𝑁 explanations to understand all use cases cumulatively. Subglobal
explanations split the instances into 𝑘 subspaces, needing 𝑘𝑛 factors to explain fully. Incremental explanations similarly can
explain the same 𝑘 subspaces, but reuses some factors, and can omit negligible changes, thus it has ≤ 𝑘𝑛 factors.

Prediction Model
Explainer Models

Global Subglobal Incremental Local
# Factors ≫ 𝑛 𝑛 𝑘𝑛, 𝑘 ≥ 2 ≤ 𝑘𝑛 𝑁𝑛, 𝑁 ≫ 𝑛

Faithfulness Self Low Med Med High
Memorability Low High Med-Low Med-High Low

2.4 Subspace-based XAI techniques
Several XAI techniques have been developed to address the short-
comings of global explanations beingf too coarse and local explana-
tions being too narrow. We discuss methods that divide instances
into subspaces and explain each subspace separately. Methods are
based on trees, rules, or aggregation.

Model agnostic multilevel explanations (MAME) [46] provides
an explanation tree with weights at each node, representing a pro-
gression from a global explanation at the root to local explanations
at the leaves. However, their method does not enforce stability be-
tween each linear model, so it would be difficult for users to learn
each sub-explanation incrementally. Model Understanding through
Subspace Explanations (MUSE) [30] provide decision sets for differ-
ent subspaces by simultaneously optimizing for faithfulness and
rule compactness, but the explanations are in terms of rules unlike
our factors-based format, and the attributes are not necessarily
the same for each subspace, thus not consistent. Equi-explanation
Maps [14] divide a feature space into hyper-cuboid subspaces (i.e.,
defined within min/max ranges for specific attributes) that are con-
sistent, and explain each subspace with linear classifiers, but its
boundary definitions are much more complex. Submodular Pick
LIME [51] leverages instance-based local LIME explanations to pro-
vide a global explanation by picking diverse LIME explanations
that have high non-redundant coverage. This aims to limit the total
number of Local explanations needed to achieve global understand-
ing. GLObal to loCAL eXplainer (GlocalX) [56] iteratively merges

local decision rules into global explanations to provide a smooth
pathway from detailed local explanations to more general global
explanations and vice versa. This was demonstrated for rule-based
explanations of classification, unlike our prediction regression task
with linear factors. Sparse LInear Subset Explanations (SLISE) [7] is
a robust regression method that finds the largest subset in the data
and trains a sparse linear model. Our method could use this to learn
the base model of the Incremental explanation. SLISEMAP [8] ex-
tends SLISE to group instances into clusters based on the similarity
of their local explanations. This involves dimensionality reduction,
so the resulting dimensions are not explicitly interpretable.

All these methods aim to explain each subspace faithfully, but
neglect to account for users having to remember or relate across
subspaces. Thus the inter-subspace consistency is low. In our work,
we focus on first providing a base explanation for a majority sub-
space, and explain remaining smaller subspaces as incrementally
different from the base. This new requirement stems from usability
needs of XAI that the prior works neglect.

3 TECHNICAL APPROACH
We first describe baseline explanation approaches using sparse
linear factors, then articulate our Incremental explanation approach.
An AI System’s prediction 𝑦 is typically generated from many
input attributes (features) 𝒙 , and the AI’s decision may change non-
linearly with each attribute (e.g., price can increase exponentially
with living area of a house). Sparse linear models provide simple
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Figure 2: User interface (UI) of AI System with Global explanation showing: 1) attributes used for prediction, 2) their values
𝑥 (𝑟 ) for the given instance, 3) factors𝑤𝑟 that the explainer multiplies with values, 4) partial contributions 𝑦𝑖 = 𝑤 (𝑟 )𝑥 (𝑟 ) of each
attribute, 5) output estimation 𝑦 =

∑
𝑟 𝑦

(𝑟 ) from the AI Explainer, 6) prediction 𝑦 from the AI System, with inequality indication
(< in this case), and 7) indicator of how different the AI Explainer estimation is from the AI System prediction. Factors are the
same for all instances and do no change. Different information may be hidden under various test conditions.

explanations by articulating only a few important attributes (hence
sparse), and indicating how each attribute influences the prediction.
These are typically presented as feature attributions, i.e., positive
or negative numbers indicating the direction and magnitude of the
influence. However, attributions are not particularly easy to track
or interpret, since they vary inconsistently for different instances.

Instead, like Poursabzi-Sangdeh et al. [48], we focus on sparse
linear factor explanations that compute the feature attribution of
the 𝑟 th attribute 𝑦 (𝑟 ) as a multiplication of a factor weight 𝑤 (𝑟 )

and the attribute value 𝑥 (𝑟 ) , i.e., 𝑦 (𝑟 ) = 𝑤 (𝑟 )𝑥 (𝑟 ) . For example,
consider a house with 13⁄4 bathrooms, i.e., 𝑥 (1) = 1.75. 𝑤 (1) = 17k
means that each increase in one bathroom costs $17k more, so
the # Bathroom contributes $17k × 1.75 = $30k to the total house
price. Users can apply these factors to another instances to calculate
how the AI Explainer would estimate the AI prediction for that
instance. For example, a house with 3 bathrooms would have its #
Bathrooms contribute $17k × 3 = $51k to its price. Sparse linear
factors can be applied broadly to all instances (Global explanation),
semi-broadly to groups of instances (Subglobal explanation), or
to individual instances (Local explanation). We introduce each of
these explanation methods and then describe our approach for
the Incremental explanation that extends Subglobal. Each type has
varying faithfulness to the AI prediction andmemorability for users
to recall the factors, which we summarize in Table 1 and illustrate
conceptually in a 1-dimensional example in Fig. 1. We refer to these
explanation variants as XAI types.

3.1 Global explanation
The simplest explainer uses a single linear factor model with one
set of factors to explain for all instances.

𝑦𝑔 =
∑︁
𝑟

𝑤
(𝑟 )
𝑔 𝑥 (𝑟 ) (1)

where 𝑥 (𝑟 ) is the 𝑟 th feature value of the instance with 𝑥 (0) = 1,
𝑤

(𝑟 )
𝑔 is the explanation factor for that feature with𝑤 (0)

𝑔 as the bias
term, and 𝑦𝑔 is the estimated AI prediction. The Global explanation
is trained by fitting a linear regression model on the whole training
dataset with mean squared error (MSE) as the training loss against

the AI model’s prediction not the ground truth. Fig. 2 shows our
user interface (UI) implementation of a Global explanation of how
an AI System predicts the price of a house based on 4 attributes,
and the bias term which we name as "adjustment".

3.2 Subglobal explanation
While the Global explanation is simple for users to understand, its
small number of factors limits its expressiveness, so it may not be
very faithful to the AI System predictions, i.e., 𝑦𝑔 is not close to
𝑦. Instead of adding more complexities for users to interpret, the
explanation faithfulness can be increased by partitioning instances
into multiple subspaces. Each subspace is then modeled with a sep-
arate sparse linear factor explanation. We constrain explanations of
each subspace to have the same attributes, and enforce the partition
based on binary univariate rules, i.e., inequality on one attribute
(e.g., 𝑥2 ≥ 2.5). Thus, a Subglobal explanation has the form

𝑦𝑠 =
∑︁
𝜍

∑︁
𝑟

[𝑥 ∈ 𝑠𝜍 ]𝑤 (𝑟 )
𝑠𝜍 𝑥 (𝑟 ) =


∑
𝑟 𝑤

(𝑟 )
𝑠0 𝑥 (𝑟 ) , if 𝑥 ∈ 𝑠0∑

𝑟 𝑤
(𝑟 )
𝑠1 𝑥 (𝑟 ) , if 𝑥 ∈ 𝑠1

...

(2)

where 𝒘𝑠𝜍 is the weights of the 𝜍th subspace explanation model,
[·] is the Iverson bracket that is 1 if its expression is true or 0
otherwise, and 𝑆𝜍 is the set of instances in subspace 𝜍 . Eq. 2 shows
that each subspace has different weights (factors) which it applies
to instances within its boundaries.

Training the Subglobal explanation model requires learning the
partition boundaries of the subspaces, and the weights of each
subspace model. We achieve this by training a linear model tree [13]
on the whole training dataset with MSE for the training loss. Such
trees are different from common classification decision trees that
predict a probability distribution of categorical labels 𝑝 (𝑦) at leaves,
or regression decision trees that predict a scalar number 𝑦 at the
leaves. Instead, linear model trees predict a linear regression model
𝒘𝜍 at each leaf, where each leaf represents a subspace 𝑆𝜍 . During
training, for each branch in the decision tree, the training algorithm
iterates through all features and possible splits, training a linear
model for each subspace (𝑠≤ and 𝑠≥ ), measuring the combined loss
for both models, and choosing the split with the lowest combined



Incremental XAI CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 3: User interface (UI) of Subglobal explanations for a typical instance (top), and an outlier instance (bottom). Factors are
different for each subspace but apply in a fixed way to any instance in each subspace. For example, while small houses with
Living Area < 2.5 ksqft have each bathroom being worth $16k, larger houses have much costlier bathrooms at $57k.

Figure 4: User interface (UI) of Incremental explanation for an instance in the typical subspace with Living Area < 2.5 (top), and
an outlier instance in the minority subspace with Living Area ≥ 2.5 ksqft (bottom). Factors are different for each subspace to
fit them accurately. Unlike Subglobal explanations, an additional column (3b) is used to show how factors are incrementally
different for the outlier cases. The main factors (3) are the same for both subspaces. For example, while smaller houses have a
modest rate of price increase per living area ($95k/ksqft), larger houses have a rate that is $120k/ksqft higher ($215k/ksqft).

loss. We then assign the majority subspace with the larger dataset as
“typical” andminority one as “outliers” (although this can be flexibly
adapted to fix user preferences or standard conventions). Though
linear model trees are not a novel technique, they are seldom used
in explainable AI, and we extend it for Incremental explanations
for our technical contribution, described in the next subsection.

Fig. 3 shows our UI of Subglobal explanations with two sub-
spaces: typical (Living Area < 2.5 ksqft) and minority outlier (oth-
erwise). For simplicity, we specifically train a decision stump (one

branch). Each subspace is defined with simple univariate decision
boundaries that are easy to interpret. Note that training a logistic
regression or linear support vector machines (SVM) would lead
to less interpretable decision boundaries, e.g., “16(# Bathrooms) +
120(Grade) < 697”, while training on a decision tree would have a
more interpretable rule, e.g., “# Bathrooms ≥ 5 and Grade < 5”.
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Figure 5: User interface (UI) of the Local explanation of an instance. Factors are specific to this and similar instances, and will
be different for other instances. For example, for houses similar to the one shown, each increase in Grade decreases the house
price by $7.1k, but this may not be the case for other houses that have very different attributes.

3.3 Incremental explanation
While Subglobal is more faithful to the AI System than Global, this
comes at a cost of the user having to read and remember more
factors. The factors are not necessarily consistent between sub-
spaces too, so users would have to interpret them independently.
To improve memorability, we propose Incremental explanations
that provide general factors for the majority, typical subspace and
an incremented factors for special, outlier subspaces. We describe
our approach for two subspaces, but it can be extended for multiple
subspaces. We define an Incremental explanation as:

𝑦𝑖 =
∑︁
𝑟

©­«𝑤 (𝑟 )
𝑖0 +

∑︁
𝜍>0

[𝑥 ∈ 𝑠𝜍 ]Δ𝑤 (𝑟 )
Δ𝑖𝜍

ª®¬𝑥 (𝑟 )
=


∑
𝑟 𝑤

(𝑟 )
𝑖0 𝑥 (𝑟 ) , if 𝒙 ∈ 𝑠0∑

𝑟

(
𝑤

(𝑟 )
𝑖0 + Δ𝑤

(𝑟 )
Δ𝑖1

)
𝑥 (𝑟 ) , if 𝒙 ∈ 𝑠1

...

(3)

where 𝑤𝑖0 is the base factors of the general explanation model,
Δ𝑤Δ𝑖𝜍 is the incremental factors of the 𝜍th special subspace expla-
nation model, [·] is the Iverson bracket that is 1 if its expression
is true or 0 otherwise, and 𝑆𝜍 is the set of instances in subspace 𝜍 .
Eq. 3 shows that while the typical subspace has Base factors, all
other subspaces have factors defined as an additive Incremental
adjustment on the Base factors.

We train the Incremental explanation model in a similar manner
as for Subglobal explanations but constrain a dependency in factors
across subspaces, i.e.,𝑤 (𝑟 )

𝑖𝜍
= 𝑤

(𝑟 )
𝑖0 +Δ𝑤 (𝑟 )

Δ𝑖𝜍 . Furthermore, to reduce
the number of terms to remember, we aim to keep most incremental
weights Δ𝑤Δ𝑖𝜍 to be zero. This is achieved by adding a sparsity L1
regularization to the original MSE training loss, i.e.,

𝐿(𝑦𝑖 , 𝑦) =
∑︁
𝑘

(
𝑦
(𝑘 )
𝑖

− 𝑦 (𝑘 )
)2

+ 𝜆
∑︁
𝜍

∑︁
𝑟

|Δ𝑤Δ𝑖𝜍 | (4)

where 𝑘 indexes the training instances, and 𝜆 is the regularization
hyperparameter. This sparsity regularization makes incremental
factors easier to remember, but this trades-off accuracy, so we hy-
pothesize that the Incremental explanation 𝑦𝑖 is less faithful than
the Subglobal explanation𝑦𝑠 . The training algorithm is similar as in
Subglobal explanations, but with non-independent parameters for
the linear models, extended loss function, and unified optimization
of both set of factors. For each candidate split, we set the majority

subspace as "typical" assigning the base factors1 𝑤𝑖0 to it, and speci-
fying Incremental factors Δ𝑤𝑖𝜍 in other minority "outlier" subspace.
Training is performed using gradient descent.

Since the partitioning of subspaces is similar in both Incremental
and Subglobal explanations, we keep them the same in the modeling
and user studies to avoid partitioning being a confounder. Fig. 4
shows our UI implementation of an Incremental explanation for
cases in the typical and outlier subspaces.

3.4 Local explanation
We have described sparse linear factors to explain multiple in-
stances, but they can also be used to explain individual instances.
Local explanations, such as LIME [51] and SHAP [42], are popu-
lar XAI techniques to explain AI decisions on a target instance by
training a linear regression model from a dataset of instances that
are local (similar) to the target instance. Explaining other instances
require retraining other explanation models locally around those
instances, and the explanations are not necessarily similar to one
another. Hence, Local explanations are faithful to the AI prediction
only to instances that are similar, and not globally or subglobally.
Consequently, users would need to viewmany Local explanations to
have an overview of the AI behavior across all instances. Although
local explanations are not designed for general understanding, their
ubiquity encourages their misuse for this objective. We hypothesize
that this makes it very difficult for users to estimate how the AI
System would predict for new instances or estimate general factors
from the inconsistent factors of each instance. We define local linear
factor explanations around a target instance 𝑥𝑙 as:

𝑦𝑙 =
∑︁
𝑟

𝑤
(𝑟 )
𝑙

𝑥 (𝑟 ) ,∀𝑥 ≈ 𝑥𝑙 (5)

where 𝑥 is the instance being explained that is similar to 𝑥𝑙 ,𝒘𝑙 is
the weights of the model (factors) with𝑤 (0)

𝑙
as the bias term, and

𝑦𝑙 is the estimation of the local model. We implemented the Local
explanation with LIME [51]. Fig. 5 shows our UI implementation of
a Local explanation around an instance.

1Note that the base factors only represent those of the "typical" instances (majority
subspace), not of the Global explanationmodel; this is not the same due to the constraint
to minimize incremental factors which will shift the base weights during training.
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4 EVALUATION
We evaluated Incremental explanations against baseline explana-
tions (Global, Subglobal, Local) across multiple studies to inves-
tigate: i) faithfulness to estimate the AI prediction in a modeling
study, ii) usage strategies and outcomes to interpret AI decisions
in a qualitative formative user study, and iii) impact on decision
duration, explanation recall, and AI decision understanding in a
quantitative summative user study.

4.1 Modeling Study
We conducted a modeling study to evaluate how faithfully each
explanation model estimates the AI. We evaluate on three datasets,
and our approach can further generalize since we are using standard
machine learning processes. We describe the dataset preparation,
methods to train and test the models, and evaluation results.

4.1.1 Applications and datasets. We evaluated the sparse linear
factor explanations on a regression prediction task, since the pre-
dictions remain linear, unlike classification that would have tapered
effects at high or low probabilities (e.g., logistic regression). Like
Poursabzi-Sangdeh et al. [48], we evaluated on a housing price
dataset due to the simplicity of the application scenario that most
users can readily understand and appreciate. However, we chose
not to reuse their NYC dataset since, surprisingly, a linear global
model is sufficient to predict prices highly accurately. However,
real-world datasets tend to be more complex, and require nonlinear
models. Hence, we used the "House Sales in King County, USA"
dataset [21] with 21,613 instances to predict the price of houses with
22 features. Prices ranged from $72k to $7.7M (Median = $452k). We
performed feature selection to obtain four features (# Bathrooms,
Living area, Grade, Age) to limit the cognitive load for users.

For generality, we further evaluate on two additional datasets:
Heart Disease [23] with 1025 instances to predict heart disease
using 14 common features, and Auto MPG [50] with 398 instances
to predict the miles per gallon fuel efficiency using 7 features. Al-
though the prediction task for heart disease is to classify whether a
patient has heart disease, the predictor model produces a numeric
confidence that can be interpreted as a continuous risk score. We
train subsequent explainer models as a regression task to predict
the risk score of the predictor model. For the heart disease dataset,
to support human interpretability of the explainer models, we per-
formed feature selection to obtain four features (Age, Resting blood
pressure, Cholesterol, Max heart rate). Similarly, for the Auto MPG
dataset, we performed feature selection to obtain four features
(Cylinders, Displacement, Horsepower, Weight).

For simplicity, we partitioned each dataset into two subspaces
and set the same rule boundary for both Subglobal and Incremental
explanations. The optimal partitions were at Living Area ≥ 2.5 ksqft
for House sales, Age ≥ 58 years for Heart disease; and Horsepower
≥ 92W for Auto MPG.

4.1.2 Results on performance of AI prediction models. For each
dataset, we trained a random forest regressor (House Sales, Auto
MPG) or classifier (Heart Disease) [9] as an AI prediction model on
a training set of 80% instances, and evaluated on a heldout test set
of 20% instances. We then trained the four explanation (XAI) types

to explain all instances in the test set. For Local explanation, we av-
eraged the performance across all instances. Using the training set,
we performed 5-fold cross validation in all our analyses and report
the mean and standard deviation of the validation performance
averaged across folds; see Table 2. We report the performance on
the heldout test dataset – House Sales: mean absolute error (MAE)
= $139k and 𝑅2 = 0.67; Heart Disease: accuracy = 86% and test AUC
= 0.86; Auto MPG: MAE = 3.12 mpg and 𝑅2 = 0.71.

4.1.3 Results on faithfulness of XAI types. Fig. 6 shows the unfaith-
fulness of the XAI types calculated by their absolute error (AE)
between the explainer 𝑦 and predictor predictions 𝑦. Note that
the explanation faithfulness (𝑦 vs. 𝑦) does not measure the same
thing as predictor performance (𝑦 vs. 𝑦). As expected, Global ex-
planations had the worst faithfulness due to its low expressiveness
(fewest factors), while Local explanations were the best because
they were trained to be accurate to small local neighborhoods. How-
ever, they are not robust or memorable, so we expect users to not
gain as much understanding from them compared to the other XAI
types. Subglobal explanations had slightly better faithfulness than
Incremental explanations since the latter had another objective of
simplicity (fewer incremental factors). However, we expect this dif-
ference to be negligible in practical use by people, and the problem
of memorability or cognitive load would override the small benefit
of faithfulness, and we hypothesize that Subglobal explanations are
less memorable and interpretable than Incremental explanations.
We evaluate these hypotheses later in the summative user study.

4.1.4 Results on performance of XAI as glassbox explainers. We
further evaluate whether Subglobal and Incremental explanations
can serve as accurate interpretable "glassbox" models. In such cases,
these models would be used for the AI prediction task, and be intrin-
sically interpretable, thus avoiding any unfaithfulness of surrogate
explanation models. We trained the models on the training dataset
and report their performance. Since Heart Disease is a classifica-
tion task, we accordingly apply logistic activation to the linear
regression outputs and change the training objective to the binary
cross-entropy loss. The interpretability of the factor coefficients is
affected, since the sigmoid transform in logistic regression applies a
nonlinear distortion on all weight. However, the directionality and
the magnitude of the factors still provide more interpretability than
blackbox models. We report the glassbox explainer performance as
"AI Performance" in Table 2. In summary, Subglobal and Incremen-
tal models performed better than Global models, but this is still a
worse than the nonlinear AI model (random forest, in this case).

4.1.5 Investigating explanations for multivariate attributes across
subspaces. In Fig. A.1 in Appendix A.1, we show the 2D decision
surfaces of the AI and explanation models for the House Sales
dataset to demonstrate how the four different XAI types model the
relationships between the AI prediction and multivariate attributes.

4.1.6 Investigating varying subspace thresholds. While Subglobal
and Incremental explanations learn the feature space partitioning
threshold automatically with the linear model tree, they can also be
set with custom values to fit the explanation needs. We thus exam-
ine, in Appendix A.2, how selecting different partition thresholds
affect the faithfulness of each subspace explainer model, how the
factors change, and whether incremental factors are kept small.
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Table 2: Modeling results from 5-fold cross-validation of AI performance and XAI faithfulness across three datasets showing
mean ± standard deviation. AI performance indicates when an explainer is trained on the ground truth dataset as a glassbox
interpretable model. XAI unfaithfulness evaluates each explainer as a surrogate explanation with respect to the AI Model.
Except for AI performance for Heart Disease that is measured as % Accuracy, all other metrics are MAE, where smaller is better.

House Sales AI
Model

XAI types
Subspace Metric (MAE $k) Global Subglobal Incremental Local
Combined AI Performance (inv) 132.5 ± 2.4 145.1 ± 3.0 138.1 ± 2.6 139.8 ± 2.9 -

XAI Unfaithfulness 0 68.4 ± 1.2 48.5 ± 0.7 53.8 ± 0.7 32.4 ± 0.2
Typical AI Performance (inv) 102.9 ± 1.3 113.5 ± 1.5 105.5 ± 1.5 108.5 ± 1.6 -

XAI Unfaithfulness 0 54.3 ± 1.5 35.1 ± 0.5 41.3 ± 1.1 26.9 ± 0.4
Outlier AI Performance (inv) 213.2 ± 7.9 231.2 ± 8.9 227.0 ± 9.2 225.1 ± 9.0 -

XAI Unfaithfulness 0 107.0 ± 3.4 85.1 ± 2.7 87.7 ± 2.1 47.0 ± 1.8

Heart Disease AI
Model

XAI types
Subspace Metric (Acc %, MAE %) Global Subglobal Incremental Local
Combined AI Performance 85.4 ± 2.7% 69.87 ± 6.66% 71.46 ± 3.06% 70.6 ± 4.55% -

XAI Unfaithfulness 0 18.2 ± 0.8 15.5 ± 0.9 15.7 ± 1.1 8.9 ± 0.5
Typical AI Performance 85.7 ± 2.2% 79.73 ± 3.71% 78.3 ± 3.5% 77.88 ± 2.57% -

XAI Unfaithfulness 0 16.9 ± 1.1 15.3 ± 1.5 15.3 ± 1.6 8.5 ± 0.9
Outlier AI Performance 84.9 ± 4.7% 55.85 ± 11.05% 61.55 ± 4.68% 60.2 ± 7.56% -

XAI Unfaithfulness 0 20 ± 1.7 15.8 ± 0.6 16.5 ± 0.6 9.4 ± 0.9

Auto MPG AI
Model

XAI types
Subspace Metric (MAE mpg) Global Subglobal Incremental Local
Combined AI Performance (inv) 2.65 ± 0.3 3.25 ± 0.32 2.78 ± 0.28 2.84 ± 0.34 -

XAI Unfaithfulness 0 1.91 ± 0.16 1.08 ± 0.05 1.11 ± 0.09 0.53 ± 0.04
Typical AI Performance (inv) 3.37 ± 0.42 3.92 ± 0.49 3.59 ± 0.51 3.64 ± 0.53 -

XAI Unfaithfulness 0 2.17 ± 0.25 1.32 ± 0.14 1.36 ± 0.14 0.83 ± 0.13
Outlier AI Performance (inv) 1.93 ± 0.58 2.58 ± 0.30 1.97 ± 0.49 2.03 ± 0.46 -

XAI Unfaithfulness 0 1.69 ± 0.30 0.87 ± 0.17 0.90 ± 0.21 0.23 ± 0.05
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Figure 6: Results of modeling study showing the unfaithfulness of each explanation type calculated as absolute error (AE)
between the AI Explainer estimation and AI System prediction AE(𝑦, 𝑦) across three prediction tasks with different datasets:
a) House Sales in King County [21], b) Heart Disease [23], c) Auto MPG [50]. Global explanations are least faithful, Local
explanations most faithful, and Subglobal and Incremental explanations have similar faithfulness. The faithfulness of typical
or outlier cases depends on the explainer models trained for each dataset.

4.2 Formative User Study
To investigate how people use the XAI types (Global, Subglobal,
Incremental, Local) and identify usability issues, we conducted a
formative study with 14 participants recruited from a local uni-
versity. They were 23 years old on average (20 to 30), and 6 were
female. All were undergraduate and graduate students from various
disciplines (5 Sciences, 4 Business, 2 Engineering and Technology,
2 Arts, and 1 Healthcare). The study was conducted virtually over

a Zoom video call with screen recording, and lasted 60 minute.
Participants were compensated with a digital payment of $15 USD.

4.2.1 Method and Procedure. We conducted the studywith awithin-
subjects experiment design, where each participant views multiple
XAI types, so that they may directly compare among them. The
experiment apparatus and procedure are similar to the subsequent
summative study, which we describe later. To ensure that partici-
pants did not confuse between attribute names, values, factors, and
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partial contributions, we trained them to distinguish the columns
in the tabular UI, understand how each partial contribution is cal-
culated as a multiplication of factor (weight) and value, and verified
their understanding with screening questions. Each participant
first used the Global explanation as a baseline, then 1-3 randomly
selected XAI types as time permitted. For each explanation, the par-
ticipant performed 3 trials of viewing an AI explanation to predict
the price of a house instance. They were asked to estimate what
they thought the AI System would predict based on the information
provided by the explanation. The instances were chosen from the
same dataset as the Modeling study, and used the same apparatus as
the summative study (conducted later), with user interfaces shown
in the Technical Approach section.

We used the think aloud protocol to elicit the participant’s
thought processes as they read and applied the explanations. The
participant could ask clarification questions any time too. Since
the participants were guided and supported by the experimenters,
we do not report the performance of their estimations on the AI
system. With participant consent, we audio and screen recorded
participant vocalizations and interactions with the UI.

4.2.2 Findings. We conducted a thematic analysis on participant
behaviors and report key findings.

We note that some participants may have conflated the AI and
XAI behavior, but we do not require our users to treat them as
separate, since both are meant to be presented as a unified agent in
the AI’s user interface. In this study, we focus on how participants
interpreted each XAI type, rather than their trust or decision with
respect to the AI prediction model.

a) Dynamic explanations perceived as more realistic than static,
global explanations. Most participants preferred explanations to be
dynamic rather than static like in Global explanations. Only P13
felt that “the fixed factors of [Global] are more intuitive and similar to
how many people think.” Perhaps, she preferred rules of behaviors
to be consistent and unchanging. On the other hand, many partici-
pants appreciated the complexity of house price estimations and
AI systems. P1 believed that the AI system "is a bit more dynamic
in nature, or the equations will adjust accordingly to how much data
is set into the thing." He felt that Global explanations did not reflect
the AI system well since "it would just come up with one static figure
because the factors itself is consistent and doesn’t change across the
house type." P7 expected to see different factors for instances of dif-
ferent categories, remarking that "it’s not very realistic for the factors
to be the same for different house types,like factor for bathrooms is al-
ways [the same]". This suggests she categorizes instances into types
and expect rules to apply different for each category. In contrast, P8
appreciated the adaptiveness of non-Global explanations and felt
that "it’s logical that the factors would change for different type of
houses, ... since there might be other factors that influence the factor
values for each attribute." Similarly, on seeing that "all the factors
were the same" for the Global explanation, P6 remarked "that might
not be good." He explained that for larger houses, the factor for
Living Area "should be on a diminishing graph", i.e., smaller factor
than for smaller houses due to smaller marginal utility of living
area in an already large house.

Though less dynamic than Local explanations, participants found
the subspace partitioning of Subglobal and Incremental explana-
tions intuitive. P1 explains, "[Subglobal] is a lot more accurate [than
Global] because it considers more things", referring to the two sets
of factors given. P14 affirmed that "the additional factors [in In-
cremental] are helpful for the predictions in terms of accuracy". P3
remarked that "[the Incremental factors] makes sense, because for
bigger houses the land would cost more." This also shows the relative
understanding that P3 had to compare between subspaces, thus
demonstrating the usefulness of explaining incrementally.

b) Incremental explanations perceived as more memorable and ac-
curate than Subglobal explanations. Both Incremental and Subglobal
explanations partition the subspaces similarly, but Incremental ar-
ticulates the relationship between the two subspaces, and Subglobal
treats them independently. Participants could appreciat the bene-
fit of providing this context in Incremental explanations. P6 liked
that "[Incremental] would be more informed since you are telling
the user how they’re changing the factors, that there is an addition".
P11 even stated that the consistency of Incremental made him feel
assured because "not all the factors are changing, like there were
more considerations being made by the explanation." P4 mentioned
that "[Incremental] would be easier for me to remember because there
are fewer numbers" and P9 agreed that this is due to "rather than
remembering two separate sets of factors". Furthermore, P12 believed
"[Incremental] will give you more accurate values, which helps you
make decisions quicker.” Though, this is not necessarily true, and
suggests a positive halo effect of better usability leading to perceived
correctness. Nevertheless, it suggests that this can help boost user
confidence, trust and usage of Incremental explanations. Despite
these benefits, some participants faced some usability issues. P7
felt that "[Incremental] feels logical... but more time-consuming since
it’s slightly complex due to the additional factors you have to add for
the calculation."

4.3 Summative User Study
We conducted a summative user study to evaluate the interpretabil-
ity and memorability of each XAI type. We investigate how well
participants understand, remember, and apply explanations to an-
ticipate behavior for future instances. While testing the impact
on a downstream decision making task would be meaningful, it
would impose experiment confounders, such as the participant’s
prior knowledge of the task [38], their varying underlying utility
objectives (e.g., how much they care about cheap housing) [43],
increased mental fatigue which limits the number of trials [2], and
conflation between AI and XAI estimations. Thus, we leave that for
future work.

Next, we describe our experiment design and hypotheses, exper-
iment apparatus, procedure, analysis and results.

4.3.1 Experiment Design. We designed our experiment as a 4×2
factorial mixed-design experiment with primary independent vari-
able (IV) as XAI type (four levels: Global, Subglobal, Incremental,
Local) and secondary IV as Subspace segment (two levels: typical,
special) to investigate if effects differ by instance type. XAI type
was manipulated between-subjects due to the learning effect of
participants sticking to one mental model of the AI Explainer after
being trained on the first XAI type. Subspace was manipulated
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Table 3: Hypotheses and findings of the summative user study regarding different dependent variables for various XAI types:
Global (G), Subglobal (S), Incremental (I), Local (L).

Dependent Variable Metric Hypothesis Finding Evidence

Decision duration Log(Time) G < I < S < L I ≈ G < S ≈ L Fig. 9a

Explanation evocation −AE(𝑦̃ℎ , 𝑦̃ ) L < S < I < G I ≈ S < L ≈ G Fig. 9b

Supported understanding −AE(𝑦̂ℎ , 𝑦̂) G < I < S < L G < S ≈ L ≈ I Fig. 9c

Sustained understanding −AE(𝑦̂ℎ | 𝑦̃, 𝑦̂) L < G ≈ S ≈ I
G < L ≈ I ≈ S

(Special: G < L < S ≈ I)
Fig. 9d

Explanation recall −AE(𝑤 (0)
ℎ

, 𝑤 (0) ) L < S < I < G
L ≈ G ≤ S ≈ I
(L ≈ G ≤ I)

Fig. 10

Perceived helpfulness
Perceived ease-of-task

7-pt Likert scale L < G < S < I L ≈ G ≈ S ≈ I Fig. 11

within-subjects by selecting 100 instances from the full datasets,
where we balanced 50 typical and 50 special. Each participant is
tested on 30 randomly selected instances.

We measured several objective dependent variables to evaluate
explanation recall, application, and understanding:

• Explanation recall measures how accurately the participant can
infer or remember each factor𝑤 (𝑟 ) of the XAI type, by typing
them out. This explicitly measures memorability. For the 𝑟 th
attribute, given the participant’s estimate 𝑤 (𝑟

ℎ
), we calculate

the lack of recall by the MAE. We asked about the factors for
all instances (global), typical or special instances (subglobal).
Although participants with Local explanations never see general
explanations, we ask them to infer broadly.

• Sustained understanding (without XAI) measures how well the
participant can estimate the AI System’s prediction. This is
forward simulatability [16], a popular metric in XAI research
and evaluations. Since we are modeling a regression problem
(rather than the typical classification), we calculate this with a
proxy metric for unfaithfulness with the absolute error (AE) of
regression predictions, i.e., |𝑦ℎ −𝑦 |. This measures how well the
participant can apply knowledge gained from studying explana-
tions for other instances without having seen their explanations.
It measures deeper understanding than Supported understand-
ing, which we also measure, described next.

• Supported understanding (with XAI) measures how well the par-
ticipant can estimate the AI System’s prediction, given that
he/she can view an approximation from the AI Explainer 𝑦, i.e.,
𝑦ℎ |𝑦. This is similar to Sustained understanding, but easier, since
the participant can leverage 𝑦 to estimate his answer.

• Explanation evocation measures participant correctness to esti-
mate the AI Explainer’s estimation 𝑦. This is the forward simu-
latability of the AI Explainer, which we compute its reverse as
𝑦ℎ −𝑦. Unlike Explanation recall, which directly elicits explana-
tory factors, this queries the participant about the explanation
outcome, which implicitly evokes the explanation.

• Decision duration measures how long participants spent to per-
form the forward simulatability task without XAI. Since dura-
tion follows a long-tail distribution, we analyzed its logarithm.

For participant convenience, we measured numeric factors and pre-
diction estimates with sliders to give users bounds when answering,
but use the same wide range to avoid priming. Furthermore, we
measured subjective opinions on Perceived helpfulness and Perceived
ease-of-task to investigate how helpful the different XAI types were.
Specifically, we asked whether the participant agreed or disagreed
that: the AI was accurate (1), the explanation was helpful to estimate
factors globally (2) and subglobally (3), the forward simulatability
tasks were easy with (4) or without (5) the explanation. These were
measured on a 7-point Likert scale (-3 to +3). Table 3 summarize
our hypotheses and the subsequent findings from our results and
analysis, described later.

4.3.2 Experiment Apparatus. Our user interface was inspired by
the linear factors explanation interface of Poursabzi-Sangdeh et
al. [48], but we adapted it to distinguish the linear model explainer
from the nonlinear model predictor, and extended it to support
various XAI types: Global, Subglobal, Incremental, Local. Partic-
ipants saw the exact interface as shown earlier in Figs. 2-5. See
the Appendix for the full survey that participants saw. We also
made the UI interactive (see Fig. 7) to facilitate participant learning
and engagement by examining how explanations and predictions
depend on instance values and factors. To improve interpretability
and usability, we rounded most numbers to two significant figures,
though the calculations are still done in full precision, and partici-
pants can see the precise numbers by hovering their mouse cursor.
The intercept term is rounded to three significant figures, since it is
a direct partial contribution component, unlike the other terms as
factors. We included green meter bars to show the relative levels
of attribute values to allow participants to interpret the sense of
each number. During training, we show the % error between the AI
Explainer and AI System to make this salient and accelerate learn-
ing about explanation faithfulness. We implemented our survey in
Qualtrics and embedded the user interface.

4.3.3 Experiment Procedure. Each participant was engaged in the
following procedure:

1) Introduction to the study (see Appendix Figs. A.3-A.5).
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Figure 7: User interface (UI) during testing with factors hidden, but editable. Participants can type their own numbers to explore
how the AI Explainer would compute based on various factors. This helps users to learn how factors work. Here, participants
are asked to forward simulate both the AI Explainer and AI System without seeing any factor explanations.

2) Consent to participate. This study was approved by the univer-
sity institutional review board (IRB).

3) Tutorial on the AI prediction task (housing price prediction)
(see Fig. A.6-A.8).

4) Tutorial on the user interface and test tasks. Different features
are introduced depending on XAI type condition (see Figs. A.10,
A.12, and A.14).

5) Screening questions to ensure that the participant can interpret
and use the explanation factors correctly (see Figs. A.9, A.11,
A.13, and A.15).

6) Forward simulatability session (see Fig. 8) of 5 trials with reflec-
tion and 25 regular trials, where each trial:
i) On page 1 (see Fig. A.16), view the user interface with only

values shown and forward simulate what the AI Explainer
and AI System will output, as Explanation evocation (𝑦ℎ)
and Sustained understanding (𝑦ℎ), respectively. Factors and
consequent calculations are hidden. The UI is interactive to
allow the participant to type different factor values while
attempting to estimate the AI outputs (see Fig. 7). Partic-
ipants used two sliders to indicate their estimates for the
AI Explainer and AI System outputs (see the bottom of Fig.
A.16). To enhance the learning of the AI Explainer and AI
System behavior and help participants learn to apply the
factors, we posed several reflection questions (see the middle
section of Fig. A.16). These were only asked for the first 5
trials to limit the survey duration.

ii) On page 2 (see Fig. A.17), additionally view explanatory
factors and AI Explainer calculations, based on XAI type
condition, and forward simulate what the AI System will
predict. This measures Supported understanding.

iii) On page 3 (see Fig. A.18), review their answers with the
actual AI System prediction. This frequent review allows
the participant to continuously learn from his/her mistakes
to pay better attention to learn the factors, and strengthen
their understanding, across all conditions.

7) Factors recall session (see Figs. A.19-A.21), to recall the factors
for a) all instances in general, b) typical instances, and c) outlier
instances. No specific instance values are shown, but the partic-
ipant can enter their own values to examine what factors could
be suitable.

8) Answer ratings questions on Perceived helpfulness and Perceived
ease-of-task.

Values Factors AI Prediction

i) Test
without XAI

ii) Test
with XAI

iii) Review
XAI + AI

Figure 8: Procedure of a trial in the summative user study to
evaluate explanation understanding and memorability.

9) Answer demographics questions.
10) Acknowledge bonus calculations and exit.

We provided an incentive bonus of £0.03 for each Sustained
understanding task if the participant could estimate the AI System
prediction correctly to within 10% relative error (max £2.70), and
max of £0.15 for each Explanation recall task (3 tasks) based on the
mean relative error 𝜀𝑀𝑅𝐸 on a test set of 100 instances, calculated
as £0.15 × (1 − 𝜀𝑀𝑅𝐸 ).

4.3.4 Participants. We recruited workers from Prolific.co, where
160 passed screening and 336 failed. Participants who completed
the study had an median age 37 years old (26 to 81), and were 35%
female. Participants completed the survey in a median time of 96
min, and were compensated with a base of £9.00 and Median bonus
of £1.20 (£0 to £2.88).

4.3.5 Statistical Analysis. We performed a linear mixed effects
model fit on each dependent variable as the response, XAI type
and Subspace, along with other confounding variables as fixed ef-
fects, some interaction effects among the factors, and Participant as
random effect. See Table 4 for details. Note that Supported under-
standing and Sustained understanding are calculated from the same
measure, forward simulatability, but differ only by when the task
was posed, before and after showing XAI, respectively. Since they
share the dependent variable, we analyze these responses with a
single linear mixed effects model with Test with XAI to distinguish
between the two types of understanding.

The model fit was good for Log(Task time) (𝑅2 = .628) indicating
that task time depended much on fixed effects XAI type, subspace,
trial sequence specific test instance, and the participant random
effect. The model fit for Explanation recall was good (𝑅2 = .763),
indicating that it was influenced much by two factors (XAI type
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Table 4: Statistical analysis of responses due to effects (one per row), as linear mixed effects models with random effects, fixed
effects, and their interaction effect. 𝐹 and 𝑝 values indicate ANOVA tests and 𝑅2 indicate model goodness-of-fit.

Response Linear Effects Model
(Participants as random effects) F p>F 𝑅2

Explanation evocation

XAI Type + 13.3 <.0001 .483
Subspace + 139.8 <.0001
XAI Type × Subspace 20.0 <.0001
Trial ID + 127.8 <.0001
Instance ID 7.5 <.0001

Supported and Sustained
Understanding

XAI Type + 18.2 <.0001 .386
Subspace + 242.0 <.0001
Test with XAI + 912.1 <.0001
XAI Type × Subspace 12.2 <.0001
Test with XAI × Subspace + 28.5 <.0001
XAI Type × Test with XAI + 22.6 <.0001
XAI Type × Test with XAI × Subspace + 4.5 .0039
Trial ID + 94.6 <.0001
Instance ID + 15.2 <.0001

Log(Task time w/o XAI)

XAI Type + 5.8 .0006 .628
Subspace + 24.8 <.0001
XAI Type × Subspace + 5.8 .0006
Trial ID + 4854.0 <.0001
Instance ID 1.5 .0016

Explanation recall
XAI Type + 8.6 <.0001 .763
Subspace + 34.5 <.0001
XAI Type × Subspace 1.7 n.s.

Perceived helpfulness XAI Type 1.7 n.s. .977
Perceived ease-of-task XAI Type 0.1 n.s. .863

and Subspace). The model fits for Perceived helpfulness and ease-of-
task were also very good (𝑅2 = .977 and .863, respectively), though
there were no significant effect due to XAI type, suggesting high
variance based on participant individual effect. The model fit was
slightly poorer for Explanation evocation (𝑅2 = .483), due to the
difficulty to recall the explanation factors and apply weight sum
arithmetic to estimate the AI Explainer’s prediction 𝑦ℎ , leading to
increased variance in participant performance. The model fit for
Understanding was somewhat low (𝑅2 = .386), because estimating
the AI System’s prediction regardless of explanation (𝑦ℎ and 𝑦ℎ |𝑦)
are even more difficult and uncertain than estimating 𝑦ℎ . When
analyzing Supported and Sustained understanding in separate mod-
els instead of a larger model with the “Test with XAI" factor, we
obtained better model fits (𝑅2 = .415 and .479, respectively) which
is similar as for Explanation evocation, but this does not properly
account for viewing XAI as a causal factor.

4.3.6 Quantitative Results. Table 4 summarizes the model fits in
terms of our hypotheses. We describe our results in terms of each
dependent variable and summarize the findings with respect to each
XAI type. All fixed effects reported are very statistically significant
(p<.0001), and describe specific comparisons based on contrast tests.
We discuss i) how well participants could estimate the AI Explainer
and AI System predictions given different XAI types based on the
Forward simulatability trials, ii) their ability to recall the factors of
each XAI type in the Factors recall session, and iii) their perceptions
on XAI helpfulness and ease-of-task.

Forward simulatability tasks. Participant performance varied
across XAI types, but were generally poorer for special than typical

cases (p<.0001). See Fig. 9. Next, we discuss specific effects and
interpret their effect sizes2.
a) Decision duration: Participants who were trained on Global or

Incremental explanations were 1.19 (95% CI: 1.10 to 1.30) times3
faster (MG,I = 46.8s vs. MS,L = 55.7s) at determining the AI
System’s output than those trained on Subglobal and Local ex-
planations (Contrast test: ΔLog(Time) = 0.173± 0.045, p<.0001).

b) Explanation evocation: Participants with Incremental or Sub-
global explanations were more accurate in estimating the AI
Explainer’s output by $97.5k ± $34.6k (95% CI) than those with
Global or Local explanations (MS,I = $134.2k vs. MG,L = $231.6k,
contrast test p<.0001). Given the average house price of $589.8k,
this is 16.5% lower error.

c) Supported understanding: Participants who viewed Global expla-
nations were worst (highest AE) at estimating the AI System
output by $79.1k ± $13.0k (95% CI), with 13.4% lower error,
even after viewing the AI Explainer’s output than those who
viewed Subglobal, Incremental, or Local (MG = $145.1k vs. MS,I,L
= $66.0k, contrast test p<.0001).

d) Sustained understanding: The trends in participant performance
was similar as for Supported understanding, but were worse due
to the increased difficulty of estimating without first viewing

2Due to how variance is calculated in linearmixed effectsmodels [54], there is no agreed
way to calculate standardized effect sizes for fixed main or interaction effects. Hence,
we report unstandardized effect sizes, which are the raw differences of the response
variables. These are adequate to convey the practical significance in application-specific
contexts and interpret their practical meaningfulness [17].
3Calculated by inverse transforming ΔLog(Time), i.e., exp(log(𝑡2 ) − log(𝑡1 ) ) =

exp(log(𝑡2/𝑡1 ) ) = 𝑡2/𝑡1 .
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Figure 9: Results from forward simulatability trials to estimate the AI Explainer and AI System outputs without viewing
explanations (b, d), and estimate the AI System output with explanation with timing (a, c). Error bars indicate 90% confidence
interval.

AI explanations. Participants who were trained on Global ex-
planations were worst (highest AE) by $97.3k ± $13.0k (95% CI),
with 16.5% lower error, compared to those trained on other ex-
planation types (MG = $270.1k vs. MS,I„L = $172.6k, contrast test
p<.0001). Furthermore, for Special cases, participants trained on
Incremental and Subglobal explanations were better by $104.6k
± $13.0k, with 17.7% less error, than those trained on Local
explanations (MS,I = $104.6k vs. MG,L = $292.8k, contrast test
p<.0001); this suggests that subspace explanations help users
to better understand special cases.

Explanation recall task.We analyzed how well participants could
recall or infer each factor for any instance in general (globally) or for
typical or special cases (subglobally). While recall for most factors
across global/subglobal were not significantly different, the recall
for the explanation intercept term𝑤 (0) was notable. Fig. 10 shows
the results of recalling𝑤 (0) for factor recall sessions of any, typical
and outlier cases. Participants recalled factors from Incremental
explanations significantly better (lower AE) by $456k ± $185k (95%
CI) than from Global and Local explanations (contrast test p<.0001),
which is practically significant compared to the intercept terms

−$1,040k (Combined), −$697k (Typical), −$1,660k (Outliers). Fur-
thermore, though recalling Incremental factors was slightly better
than of Subglobal factors, this was not significant (p = n.s.).

Perception ratings.We had posed multiple questions on Perceived
helpfulness and Perceived ease-of-task, but found that all perception
questions except ease-of-task without explanation were correlated.
Thus, we averaged them into a Perceived helpfulness metric (Cron-
bach’s 𝛼 = .805). Fig. 11b summarizes the results of the perception
measures. Participants perceived all XAI types as somewhat helpful
(M=0.84 on a -3 to +3 Likert scale), but found the forward simulata-
bility task without XAI somewhat difficult (M=-0.75). There were
no significant differences across XAI types.

4.3.7 Summary of results. We now summarize our results of how
each XAI type compares to others.
• Global explanationwas among the fastest type due to its simplic-

ity, but it was not the most objectively helpful for understanding
due to its low faithfulness.

• Local explanation supports better understanding when provided,
but this understanding was not sustained for instances without
explanations, since participants were unable to learn to infer
factors for new cases.
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Figure 10: Results of explanation recall of the intercept term
𝑤 (0) for the global and subglobal test sessions.

• Subglobal explanation supported better recall and understanding
than Global or Local explanations, but participants were slow
when using them to estimate what the AI System will predict.

• Incremental explanation was the fastest to use (as fast as Global
explanation), and best for Supported and Sustained understand-
ing (equally good as Subglobal).

5 DISCUSSION
We have introduced the paradigm of Incremental XAI, implemented
its capabilities and validated its usefulness to help user understand-
ing and recall. Here, we discuss its generalization and limitations.

5.1 Generalizing incremental linear factors
explanations

Our implementation of Incremental explanations only had a par-
tition along one attribute to divide instances into two subspaces.
Nevertheless, since we used a tree-based partitioning method, our
approach can apply to more splits and splits in multiple attributes.
The splits can also be done on categorical attributes where each
subspace can be defined by individual or a set of labels. However,
adding more splits will add complexity to the user interface and
more information for users to learn and understand, especially in a
short online study. Future work is needed to investigate this. Fur-
thermore, we had partitioned our subspaces with trees, but rules
may be used to allow fewer terms instead. While tree-based sub-
spaces cannot overlap due to the hierarchical execution of rules,
rule sets for different subspaces may overlap, i.e., multiple rules
with different features may be true [29]. This can be mitigated with
a tie-breaker [29] or by using prioritized rule lists [32].

We had only investigated instances with numeric features, since
we focused on training linear factors for explanation models. To
accommodate non-numeric features, such as categorical features,
standard approaches to convert them, such as one-hot encoding,
could be applied. Each categorical level would be interpreted as a
feature that is either present (1) or absent (0) with linear factor that
is only applied when the level is present.

While our approach reduced the number of factors of the incre-
mented weights, the base weights can also be simplified. This way,
users can view an initial explanation with very few attributes, then

XAI Type
Global Subglobal Incremental Local

0

1

2

3

-3

-2

-1

Pe
rc

ei
ve

d
he

lp
fu

ln
es

s
Pe

rc
ei

ve
d

ea
se

-o
f-

ta
sk

Figure 11: Results of Perceived helpfulness of AI and XAI,
and Perceived ease-of-task without XAI on a 7-point Likert
scale from Strongly Disagree (-3) to Strongly Agree (+3). Error
bars indicate 90% confidence interval.

incrementally learn new attributes for special cases or further de-
tails. This can be accomplished by applying sparsity regularization
to the base factors, and a loss penalty to adding new incremental
factors (which facilitates new factors if beneficial to the loss). We
had strongly limited the number of features to four shown to par-
ticipants to manage their cognitive load. However, applications in
machine learning could to involve about 100 features. Incremental
XAI that gradually shows more features can help users to even-
tually learn many features, and gain an understanding that will
be highly faithful to the AI model. This could be implemented by
applying modeling on one subspace, iterating >2 steps, and regular-
izing against reusing features across steps. Further work is needed
to model and evaluate on datasets with many features. Though,
user testing would be challenging in lab or online studies, since
learning new features is harder than adapting prior knowledge
about existing features, and learning many features may not be
feasible in short durations.

The partitioning of subspaces was determined in a data-driven
manner with the tree model, but the factors can still be unwieldy.
We had rounded the numeric factors for simplicity, but they could
also be constrained as integers or multiples of integers [61]. The
split levels and factors could also be relatable [68] and presented
verbally or narratively [53], so that users can make sense and better
remember them.

5.2 Generalizing incremental explanations
We have investigated incremental explanations for linear factor
explanations, but argue that this can be generalized to other ex-
planation techniques, such as generalized additive models (GAM)
and rules or decision trees. These models can be used for Global
explanations by training on the full dataset, or for Subglobal or
Incremental explanations by training on subspaces, or Local expla-
nations by training on local neighboring instances. For example, a
base function could describe a quadratic trend in a feature, while
an incremental function could describe a suppressing cubic effect
for special cases; or typical cases could be described with a rule of
two features, while special cases could be described by substituting
the second feature with a third one for a new rule.
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First, we generalize to nonlinear models with independent fea-
tures, such that each feature 𝑥 (𝑟 ) has a partial contribution 𝑓 (𝑟 ) to
the prediction, i.e., 𝑦 =

∑
𝑟 𝑓

(𝑟 ) . We had modeled the contribution
of each feature by a linear factor, i.e., 𝑓 (𝑟 ) = 𝑤 (𝑟 )𝑥 (𝑟 ) However,
but this contribution could be nonlinear, i.e, 𝑓 (𝑟 ) = 𝑓 (𝑟 ) (𝑥 (𝑟 ) ).
Indeed, this matches the form of GAMs that combine nonlinear
effects of features additively, i.e.,𝑦 =

∑
𝑟 𝑓

(𝑟 ) (𝑥 (𝑟 ) ). Hence, for non-
linear models, extending Eq. 2, a generalized, nonlinear Subglobal
explanations is

𝑦𝑠 =
∑︁
𝜍

∑︁
𝑟

[𝑥 ∈ 𝑠𝜍 ] 𝑓 (𝑟 )𝑠𝜍 (6)

where 𝑓 (𝑟 )𝑠𝜍 is the nonlinear partial contribution of the 𝑟 th feature
in the 𝜍th subspace. Similarly, extending Eq. 3, the generalized,
nonlinear Incremental explanation is

𝑦𝑖 =
∑︁
𝑟

©­«𝑓 (𝑟 )𝑖0 +
∑︁
𝜍>0

[𝑥 ∈ 𝑠𝜍 ]Δ𝑓 (𝑟 )Δ𝑖𝜍
ª®¬ (7)

where 𝑓𝑖0 is the base contributions of the typical explanation model,
and Δ𝑓 Δ𝑖𝜍 is the incremental contributions of the 𝜍th special sub-
space explanation model. Here we consider that the incremen-
tal difference is additive, i.e., linear. Nonlinear effects could be
investigated with multiplicative interactions (𝑥2 → 𝑥3) or a kernel
transformation. To keep Incremental explanations simple, we can
constrain the incremental contributions Δ𝑓 Δ𝑖𝜍 with a sparsity reg-
ularization to reduce the number of terms, and with a smoothness
regularization [2] to penalize overly curvy lines.

Next, we discuss generalizing Incremental explanations to mod-
els with interaction effects, i.e., multivariate functions that involve
multiple features, e.g., 𝑓 (𝑥 (1) , 𝑥 (2) ). Common models are rules and
decision trees. While we have discussed several works to model
subspaces with rules and trees, they do not support an incremental
approach [30, 46]. To do so, future work could first convert any
rule representation into a decision tree, compute the similarity
between trees in each subspace (e.g., by calculating a graph edit
distance [19]), and minimizing the difference. However, note that
rules may overlap and lead to overlapping subspaces [29].

5.3 Scope of incremental explanations
We evaluated Incremental explanations for the understanding and
memorability of explanatory factors in AI, specifically, for users
to estimate the predictions that an AI would make (forward simu-
latability). This is meant to help human cognition toward decision
making. Further work is needed to investigate whether these lead
to improvements in downstream decision making, e.g., to decide
whether to accept or reject a case based on quality estimations [64];
such a study would require careful framing and incentivization to
ensure that users are correctly aligned and properly motivated to
the task, and avoiding the confounder of prior knowledge which can
diminish the benefits of XAI [38]. We do not propose it for percep-
tion tasks (e.g., vision and audio) or language reasoning (NLP), since
they involve innate mental processes due to stimuli or low-level
skills rather than deliberate reasoning.

Our paradigm of explanation incrementation assumes that users
are novices who start with limited knowledge of the domain or

AI application, thus they need to be taught gently. We do not ex-
pect Incremental explanations to be strongly beneficial for domain
experts who can handle complex data and have established conven-
tions [34].

Similar to Poursabzi-Sangdeh et al. [48], we had evaluated In-
cremental explanations only for one application task of predicting
housing prices. Perhaps, for applications that are less common
(e.g., health diagnosis), or with critical but complicated numbers
(e.g., decimals or fractions), Incremental and Subglobal explanations
may still be overwhelming. Future work should validate our results
across other application tasks.

5.4 Implications of incremental explanations
Our approach for Incremental explanations enables better learning
of sparse linear factor models. This adds to the body of work of
subspace-based explanations that take a divide-and-conquer ap-
proach to partitioning instances, and explaining each subspace as
similarly as possible. COGAM moderated the number of visual
chunks in line graphs [2], and it can be made to incrementally allow
more curviness to allow users to learn more details. GlocalX [56]
provides rule explanations in detail and in aggregate by merging
them. Future work could investigate which explanation format (fac-
tors, line segments, or rules) are easier and more beneficial to learn
incrementally.

Although our participants could well learn and recall Incremen-
tal explanations in our study, we acknowledge that the learning
time was brief. Most learning that people do occurs over longer time
periods with more repetitions. Hence, future work could deploy In-
cremental explanations to investigate its longitudinal benefits. We
note that under longer durations, the learning of Subglobal explana-
tions may also be improved, but perhaps less so than Incremental
explanations, due to the slightly higher cognitive load.

Our approach of Incremental explanations limited the explana-
tions to the same type (sparse linear models). However, users have
diverse preferences for and usage strategies of explanations [36, 37],
so incremented explanations should also be diverse. For example,
first provide factors, then rules. This provides users with diverse
retrieval cues, which can reinforce their memory of the explana-
tions. Future work can explore how to increment across explanation
structures.

6 CONCLUSION
We have introduced Incremental XAI to help users better recall
and apply explanations of AI. This provides a set of base general
factors for typical instances and sparse incremented factors for
special cases. In modeling and user studies, we found that Incre-
mental explanations help facilitate fast understanding like Global
explanations that explain generally, and are easy to recall and un-
derstand like Subglobal explanations that explain subspaces more
faithfully than Global explanations. Incremental explanations are
also more memorable than Local explanations, facilitating better
recall and understanding performance. This work demonstrates the
importance of supporting more memorable explanations to deepen
user understanding of AI for more productive interactions.
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A APPENDIX
A.1 Decision surfaces of each explanation
In A.1, we examine the decision surfaces of the predictor and explainer models to study how the different XAI types support linear or
piecewise-linear relationships between multiple attributes and the prediction value. Based on the House Sales dataset, this provides a
conceptual interpretation to the reader of i) how nonlinear the decision surface of the AI Predictor model is (a), and how the Local explanations
cumulatively capture the nonlinearity (e); ii) how Subspace explanations (c) better fit the nonlinear decision surface of the AI predictor
model (e) compared to the Global explanation (b); and iii) how Incremental explanations simplify memorability by first conveying a linear
relationship (d, left), then showing a partial linear segment (d, right)
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Figure A.1: Decision surface of AI prediction model and various explanation models with two attributes (x-y axes), showing
prediction output (color: darker is higher value) for the House Sales in King County, USA [21] dataset. Models are based on
the dataset used in the modeling and user studies; showing only values for attributes 2 and 4. a) Scatter plot of AI System
predictions for instances with various (𝑥2, 𝑥4) values. Dashed line indicates threshold to split for Subglobal and Incremental
explanation models. b) Contour plot of Global explanation showing linear slope mostly increasing in the direction of 𝑥2 i.e.,
𝑤2 > 𝑤4 (see factors in Fig. 2). c) Contour plot of Subglobal explanation model showing two linear models – gentler-sloped
for typical instances (𝑥2 < 2.5) and steeper-sloped for outlier instances (𝑥2 ≥ 2.5). d) Contour plot of Incremental explanation
model showing general model for all instances (Left), and incrementally-sloped model for outlier instances (𝑥2 ≥ 2.5, Right). e)
Contour plot of accumulation of multiple Local explanation models showing non-linear surface that manifests when learning
from heterogeneous local explanations.
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A.2 Subglobal and Incremental explanations performance across varying subspace thresholds
Subglobal and Incremental explanations model data with two aspects: first partitioning the feature space into subspaces, then fitting linear
factors for each subspace. Although the partition thresholds are learned automatically with the linear model tree, they may be adjusted to
simplify presentation to users. We examined how selecting different partition thresholds affect the faithfulness of each subspace explainer
model, how the factors change, and whether incremental factors are kept small.
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Figure A.2: Results of XAI faithfulness and factors for Subglobal and Incremental explanations when varying subspace
partitioning thresholds, for different datasets and subspaces. In the top row graphs, lower MAE is better, and normalized MAE
is shown to clarify the curve minima. In the bottom graphs, incremental factors are regularized to 0 if the weight values are the
same for subspace 𝑠< as for 𝑠≥ . Vertical black lines indicate the optimal partition threshold chosen in the modeling and user
studies. Gray horizontal lines indicate the factors for the Global explanation.
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For this experiment, we manually set the partition threshold of the feature selected by the linear model tree (Living Area 𝑥 (2) for House
Sales, Age 𝑥 (1) for Heart Disease, Horsepower 𝑥 (3) for Auto MPG), then trained Subglobal and Incremental models for each threshold level.
We varied thresholds from the 10th to 90th percentile of feature values, see Fig. 6 for results. We denote the subspace below the threshold as
𝑠< and the other as 𝑠≥ . Note that as the threshold changes, the ratio of subspace sizes changes, so we do not label them as typical or outlier.
We calculated the Combined MAE as the sample-weighted sum of subspace MAE based on the number of instances in each subspace, then
normalize each MAE metric for clarity (see Fig. 6, top). The lowest Combined MAE coincides with the thresholds selected by the linear
model tree. Fig. 6 (bottom) shows how each linear factor𝑤 (𝑟 ) changes with partition threshold.

As expected, the weights across XAI type for each subspace is somewhat similar (i.e.,𝑤 (𝑟 )
𝑠𝜍 ≈ 𝑤

(𝑟 )
𝑖𝜍

), with differences due to different loss

functions. However, the weights of Subglobal explanations across subspaces are generally different (i.e.,𝑤 (𝑟 )
𝑠< ≠ 𝑤

(𝑟 )
𝑠≥ ), since each subspace

is best fit with different linear models. Conversely, the weights of Incremental explanations are sometimes similar across subspaces (i.e.,
Δ𝑤𝑖

(𝑟 ) = 𝑤
(𝑟 )
𝑖<

−𝑤
(𝑟 )
𝑖≥ = 0), indicating that some incremental factors have been regularized to 0. This is seen when the dark blue and red

lines overlap in Fig. 6 (bottom). Note how the MAE may not be the lowest for such cases, so there is a trade-off to prioritize performance over
simplicity (fewer Incremental factors), which is typical in XAI methods [4] For House Sales, the incremental factors Δ𝑤𝑖

(1) and Δ𝑤𝑖
(3) are

always almost 0, and Δ𝑤𝑖
(2) = 0 when Living Area < 1.8 ksqft. In general, Base+Incremental factors are not identical to Global or Subglobal

factors due to different training objectives.
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A.3 Qualtrics survey for the summative user study
Figures A.3-A.21 depict the Qualtrics survey workflow with each of the four XAI conditions for the summative user study.

Figure A.3: Introduction of housing price estimation.

Figure A.4: Introduction of attributes in housing price estimation.
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Figure A.5: Questions on users’ prior experience with housing price estimation and AI background.

Figure A.6: Tutorial on basic (Global) AI explanation.
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Figure A.7: Tutorial on the attributes, values, factors, and partial prices of the explanation interface. All participants are first
trained on the Global explanation since it has the simplest format.
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Figure A.8: Tutorial on estimated explanation price, correct AI System price, and the percent difference.
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Figure A.9: Screening questions for the Global explanation to check users’ comprehension.
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Figure A.10: Tutorial on the Subglobal explanation.



Incremental XAI CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure A.11: Screening questions for the Subglobal explanation to check users’ comprehension.
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Figure A.12: Tutorial on the Incremental explanation.
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Figure A.13: Screening questions for the Incremental explanation to check users’ comprehension.
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Figure A.14: Tutorial on the Local explanation.
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Figure A.15: Screening questions for the Local explanation to check users’ comprehension.
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Figure A.16: Sample of the unassisted forward simulation trial, where participants are asked to estimate the explanation and
AI system outputs. The displayed UI is the Incremental condition.
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Figure A.17: Sample of the assisted forward simulation trial, where participants are asked to estimate the AI system output
based on the given explanation. The displayed UI is the Incremental condition.
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Figure A.18: Review of performance on forward simulation trials, for participants to strengthen their understanding. The
displayed UI is the Incremental condition.
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Figure A.19: Explanation recall task for all instances overall (Global).
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Figure A.20: Explanation recall task for subspace Living Area < 2.5.
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Figure A.21: Explanation recall task for subspace Living Area ≥ 2.5.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Surrogate explanations of AI
	2.2 Cognitive demands of AI Explanations
	2.3 Providing multiple AI explanations
	2.4 Subspace-based XAI techniques

	3 Technical Approach
	3.1 Global explanation
	3.2 Subglobal explanation
	3.3 Incremental explanation
	3.4 Local explanation

	4 Evaluation
	4.1 Modeling Study
	4.2 Formative User Study
	4.3 Summative User Study

	5 Discussion
	5.1 Generalizing incremental linear factors explanations
	5.2 Generalizing incremental explanations
	5.3 Scope of incremental explanations
	5.4 Implications of incremental explanations

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Decision surfaces of each explanation
	A.2 Subglobal and Incremental explanations performance across varying subspace thresholds
	A.3 Qualtrics survey for the summative user study


