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Abstract

How do the perceptual abilities developed by embodied agents correlate to the
active behaviours they execute in the 3D world? Parallels between computational
actors, namely reinforcement learning (RL) agents, can be drawn with ecological
agents through the principle of the action-perception-loop (APL), which describes
the interlinked relationship between learning to see and learning to act.

We investigate how the APL manifests in RL agents trained on a variety of em-
bodied tasks with different perceptual requirements, including motor movements,
visually-guided navigation, and localization. In the absence of a holistic percep-
tual evaluation method, we use depth estimation as a substitute task to evaluate
the agent’s learned visual encoder post-training. Our preliminary results find that
agents with smoother policies encode significantly better depth perception abilities
than a scratch encoder, but performance differences between task variations are
difficult to quantify given inconsistencies in training agents to convergence.

As a further step, we explore if APL can be applied to address technical challenges
in RL, such as sample efficiency in training. We initialize agents with pretrained
depth visual encoders and repeat their training to compare with the scratch agents.
We find that some embodied tasks which require visual information saw benefits
in the jumpstart reward performance, but definitive results are limited by agents
overfitting to the training environments. We make a list of recommended changes
to the technical setup of the experiments and suggest future directions.
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Chapter 1

Introduction

The action-perception loop (APL) describes the inherent relationship between see-
ing and doing in an environment. In J. J. Gibson’s [1] theory of ecological psychol-
ogy, embodiment is at the forefront of visual cognition. Perception of the environ-
ment equates to learning the affordances of the objects present, the understanding
of which then guides the actions that a cognisant agent can execute. In the adja-
cent fields of cognitive science and neuroscience, recent research directions focus on
approaching the motor and sensory functions of the brain as integrated units with
significant influence over one another, rather than as separate pathways [2]. Even
in evolutionary biology, the development of visual systems is shown to match the
visually-guided behaviours of animals. In a positive feedback loop, the capability
to process visual information develops in correspondance to the requirements of the
ecological behaviour of the animal [3].

While the scientific understanding of the APL in natural science fields is not abso-
lutely unified across all disciplines, there is no question that the high-level principles
about its relationship hold true. Thus, it is valuable to also apply an interconnected
model of vision and behaviour towards computational models of embodied intelli-
gence. In the field of robotics, APL manifests through active vision, which describes
a goal-oriented strategy for data acquisition through active behaviour, such as mov-
ing through the environment and focusing attention on areas of interest [4]. The
visual abilities of the robotic agent must be supportive of extracting appropriate
and useful information from the environment to select actions that fulfill some
overarching objective. Such a compatibility between the perception and action is
interesting to study, as it suggests there requires a level of sufficiency for a visual
system to meet the needs of an embodied task, and achieving such a system can
benefit developing more complex behaviours in the agent.

For the parameters of this project, we focus on intelligent agents that capable of
action through reinforcement learning (RL) policies. Given environmental observa-
tions as input, the agent selects the best action within its action space to maximize
the reward it receives. Pervasive problems in reinforcement learning include in-
stability and sample efficiency, especially when it comes to optimizing policies for
highly complex navigation tasks [5]. Therefore, the understanding of what per-
ceptual abilities arise from training an embodied task, and correspondingly what
perceptual information are beneficial for training an embodied task, can both alle-
viate practical concerns of RL training and investigate behaviour-driven perception.
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We propose to investigate both directions of the APL through a two-staged exper-
iment. We first isolate the contribution of action on perceptual development, then
explore the contribution of perception on learning active behaviours. Experiment
A evaluates the perceptual abilities that an active RL agent gains as the result of
the embodied task that it is trained to perform. We theorize that through modulat-
ing the task parameters, the visual system of the agent would develop in accordance
with the task parameters. Experiment B repeats the embodied task training with
agents that are initialized with existing perceptual abilities. We hypothesize that
the embodied tasks which require such perceptual skills would benefit the most in
terms of training speed (sample efficiency) or generalization to unseen environments.

Executing these experiments require determining an appropriate perceptual metric
and a set of embodied tasks with controlled variations in the task parameters. Nei-
ther objective is well-defined in standard computer vision and reinforcement learning
research. There does not exist any measures of embodied visual intelligence (even
for humans), so this project uses depth perception as a proxy metric. Depth is rel-
evant to action for several reasons, including its connection to the development of
independent movement [6] and the visual anatomy of animals eyes to support their
depth perception abilities based on their active behaviours [3]. Depth information
can be easily captured through RL training simulators, thus minimizing the tech-
nical complexities of the implementation. Chapter 3 introduces the full motivation
for using depth as the perceptual task and provides details of the implementation
of the metric.

For the embodied task variations, the main goal is to probe which task parameters
induces changes in agent’s learnt perceptual abilities. The implementation of the
agent follows standard RL conventions and are described in Chapter 4. We outline
a set of RL training task objectives that increments in complexity, from random
movements, to motor-based skills like ‘move forward’, to more complex navigation-
based behaviours like ‘move to this location’. For our purposes, an embodied task
is defined according to a high-level task objective through a reward function that
encapsulates several reward axes, each one representing an embodied skill that is
interpretable in the biological context. For example, a negative penalty for collisions
would encourage ‘collision-avoidant’ behaviour. A set of intra-task and inter-task
reward variations are explored to determine how they contribute to the development
of active depth perception. The experiment details are provided and justified in
Chapter 5.

The bridge between active task training and static perceptual evaluation lies in the
capability to agilely isolate the perceptual network of the agent. The advantage
of computational model over human test subjects is the ability to directly access
the encodings of the ‘visual cortex’ for downstream experiments. We apply transfer
learning to the extracted the visual encoder from the trained agent as the evalua-
tion method for depth perception. This technique is widely applied to transferring
knowledge between overlapping task domains [7]. Humans also demonstrate that
training in one visual task results in an improvement in transferred performance in
a related visual task [8, 9]. On the neurological level, it is hypothesized that neu-
rons undergo reweighting to fine-tune to the new task, drawing parallels to weight
updates in a neural network [10]. The technical implementation is described in
Chapter 4.

In summary, this project investigates if depth perception (as a proxy of general
perceptual intelligence) arises from training an RL agent on embodied tasks of
various objectives and skill axes. Furthermore, we compare and contrast if the
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presence of depth perception abilities improves the outcomes of training a given
embodied task. Establishing a bidirectional relationship where action influences
perception, and vice versa, would demonstrate the existence of a computational
version of the APL. The formulation of these experiments can be extended in the
future to other perceptual task domains as well. In the best case scenario, depth
estimation would be replaced with an idealized metric that is able to fully evaluate
intelligent visual systems.



Chapter 2

Related Works

This section explores the related literature across a range of fields. Since we are not
building directly off of any specific studies, the literature search is not restricted to
the technical domain, but attempts to identify works that bridge the gap between
artificial and natural intelligence. We review works pertaining to offline computer
vision, active computer vision, robotics, reinforcement learning, and transfer learn-
ing. Although there is a strong history of neuro-inspired robotic systems, most
works were completed prior to the popularization of deep learning methods and
thus are not considered high-impact in the current research landscape. More re-
cently, there has been increased interest within the machine learning community
regarding techniques to improve reinforcement learning performance using methods
such as transfer learning, representation learning, and self-supervised learning.

In general, we do not find any works that use deep reinforcement learning to directly
study the full action-perception loop in embodied agents. The closest aligning work
is [11], which studies how interactive RL agents trained with gameplay develop
visual representations of the world. The agents are evaluated on both static image
datasets (similar to us, but with a wider variety of tasks including depth, normals,
classification, and affordances) and dynamic tasks that require the integration of
temporal information, which are inspired by classical psychology tasks.

Computer Vision: Classic computer vision (CV) typically approaches visual eval-
uation with standalone tasks on large static image datasets. Tasks such as depth
estimation [12, 13], semantic segmentation [14], object classification [15] have re-
ceived incredible amounts of research attention and are associated with standardized
performance benchmarks. The goal of this project is not to improve on the state of
art classification or prediction performance in offline visual tasks, but approach vi-
sual learning as an action-driven process. We use depth estimation as the perceptual
metric to evaluate active agents, but the emphasis is on the relative performance
between agents, not the absolute performance (see Chapter 3 for our metrics).

Active Vision: In simple terms, active vision is differentiated from offline com-
puter vision with the assumption that the observer is active in the environment
and able to control sensing parameters [16]. It can be framed as a strategic data
sampling for active tasks, as such selecting where in the environment to observe to
maximize the gain of information [4, 17]. Complex visual tasks see benefits when
approached as an active visual task rather than a passive visual task (at least prior
to deep learning) [18, 19]. There are also significant applications in robotics, in-
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cluding navigation and localization. Overall, technical works in active vision mostly
focus on sensor planning [20], where we intend to focus on the idea of embodiment.
This is similar to the much more underdeveloped field of enactive vision, which
describes cognition and perception from a sensorimotor framework [21, 22].

Bio-Inspired Robotics: Predating the advancement of deep learning-driven re-
inforcement learning (DRL), neuroscience and psychology have been used to guide
the design of to robotic systems and controls, including the visual processing mod-
ule. In such works, roboticists take inspiration from neuronal organization or
behavioural-driven abilities of insects and animals to handcraft similar features in
robots [23, 24, 17]. This method is not common anymore, as it is not reasonable
to expect that a computational system, under its own set of unique constraints and
task specifications, would exactly reflect the composition and behaviour of natural
intelligent systems. We do not use nature to guide the design of our agent, but
rather we investigate if the APL principle can be observed beyond natural domains
and leveraged for the advantage of RL training.

Reinforcement Learning: A wide discipline [25] with many applications from
games [26] to manipulation [27] to navigation [28], RL solves a class of problems
that requires making decisions on acting in an environment. Rather than learning
in a supervised manner on labelled data, RL agents are trained on a reward signal
to develop a policy for acting that maximizes the said reward. While powerful,
there are many problems with associated with this paradigm of learning, including
the exploration vs. exploitation trade-off [29], reward formulation, generalizability,
and sample efficiency [5]. The latter is particularly impactful to pixel-based DRL in
complex environments, as agents struggle with extracting useful state representa-
tions from rich image inputs. Works have targeted sample efficiency problems with
(a non-definitive list of) methods like meta-learning [30], representation learning
[31, 32, 33], self-supervised learning [34, 35], data augmentation [36], and expert
demonstrations [37, 38].

Transfer Learning: When dealing with limited training samples, transfer learning
(TL) can be used to share knowledge representations between similar but discrepant
tasks [7, 39], including in visual domains [40]. In the RL context, TL can be
leveraged in such ways as directly transferring between RL tasks [41], or pretraining
the agent with useful state representations [42, 43, 44, 45]. Several works find that
the representations learned through source tasks or exploratory tasks improves the
results in the downstream task training [46, 47].

Most relevant to our methods is [48], which investigates how visual priors can be
used to enhance the training of visuomotor navigation and localization agents, and
[49] which does the same for manipulation agents. Both find that pretraining rele-
vant visual tasks result in better generalizability and learning speed for the agent.
We take the approach of transferring visual encoders trained on depth estimation
to the agent, which can be regarded as a limited task subset of [48]. In an ideal
scenario, we would be pretraining on a set of tasks that are optimal for embodiment.



Chapter 3

Perceptual Metrics

Static image tasks on large RGB image datasets (e.g. classification on ImageNet
[50]) are often treated as the ubiquitous way to evaluate vision networks, but this
unveils little about perception necessitated by action. If we consider a biological
model of visual intelligence, there exists a number of tasks used by cognitive scien-
tists and psychologists to assess visual skill. These range from low-level (confined to
a basic perceptual dimension) like orientation discrimination, to high-level (related
to identifying natural objects) like face recognition [10]. However, the same problem
arises that the acquiring of these skills are not necessarily driven by action, thus
we must turn to another source. As mentioned in Chapter 1, the proxy perceptual
skill selected is depth estimation, which will be explained in more detail here.

3.1 Depth Perception

The infant’s gradual acquisition of depth perception is a topic of interest in devel-
opmental psychology [51]. It has been observed that depth is likely linked to active
tasks like eye and head movements, reaching [51], and locomotion [6]. The ability
to perceive depth is not enabled by one singular function, but rather arises from
a combination of visual cues that contribute varying depending on the parameters
of the scene. Binocular vision, which utilizes the angle of which the eyes focus
at, plays a larger role in close-by settings, where the sensitivities to convergence is
higher [52]. Monocular people have reduced depth perception, but can rely on cues
like motion parallax, perspective, and familiar size of objects to judge distances [53].
Figure 3.1 from [54] depicts the taxonomy of depth cues.

The visual cliff experiments [6] depicted in Figure 3.2 aimed to investigate depth
perception through evaluating responses of locamotive babies and animals placed
near a glass drop-off. The study identified that some form of depth understanding
is present during the development of independent movement. This follows the prin-
ciples of ecological psychology, which believes that perception is for understanding
affordances of the environment. While their conclusion is broad and does not exam-
ine the different contributing depth cues in isolation (as it is actually the case that
some types of depth perception are present from birth [51]), depth understanding
presents us with a valuable and interesting perceptual skill to investigate.

7
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Figure 3.1: Taxonomy of depth cues from [54].

Figure 3.2: Visual cliff experiments where an infant and young goat respectively
are placed on glass platforms to simulate a cliff [6].
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Animals’ depth perception abilities varies depending on their ecological role and is
enabled by their visual anatomy, see Figure 3.3. Ambush predators have elongated
pupils to reduce blur in their depth of field to better estimate distances, while prey
animals do not require this skill, thus giving them horizontally expanded pupils for
panoramic vision [3]. This gives rise to the implication that if robots in the wild
can curate their own visual system from active tasks, they should develop different
depth sensitivities based on the parameters of their task and the limitations of their
onboard sensors. In our specific application, we consider a monocular RGB camera
as the only source of input information to the agent. This creates some interest-
ing restrictions as any cues from binocular vision and other senses are eliminated.
However, even with a single RGB camera, depth can still be signalled through a
variety of ways — optical flow, familiar sizes, texture deletion, and occlusion.

Figure 3.3: Animal pupils and distribution of their ecological foraging modes,
adapted from [3]

3.2 Depth Dataset

Despite the sensory limitations of the computational model, there is still benefit
to investigate depth as a perceptual task. A great advantage is that depth ground
truth is readily available via the Gibson dataset of scanned 3D environments [1],
which the agent trains within via the Habitat simulator [55]. Gibson contains 572
buildings composed of 1,447 floors covering a total area of 211,000 m2, but only
90 compatible buildings are used in this project. While other image datasets like
Taskonomy [40] contain a wider variety of mid-level visual tasks, they were not
considered at this stage due to the potentially significant domain gap between the
active training and transfer learning stages.

We capture datasets of RGB images and corresponding depth maps by sampling
500 random viewpoints and locations from navigable areas of each environment.
This can be done by attaching RGB and depth sensors (both of image resolution
128x128) to the simulation environment and saving the outputs of the observation.
Any areas where depth is not available, such as outdoor spaces or glass, the pixels
are masked out and not included in the loss computation. The range of depth varies
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approximately between 0-14 meters to the image plane. The training and evaluation
dataset splits are detailed in Chapter 4.

3.3 Non-linear Depth Experiments

Although pixelwise depth estimation was chosen as the measurable task, we initially
considered that it would not be optimal for capturing active vision skills. To given
an example, humans are not very good at predicting raw distance values as we
overestimate close distances and underestimate far distances [56]. We experimented
with capturing non-linearities in depth perception by applying masks to the depth
maps. In this section, we evaluate a trained agent on these depth estimation task
variations via our transfer learning setup. The technical implementations of the
setup are detailed later in 4. For a given depth variation task, we see if a pretrained
RL agent can outperform a scratch agent to a higher degree in terms of evaluation
loss on the task in comparison to vanilla depth estimation. If shown to be true,
then the non-linear variation of depth is a better match to the depth representation
that the agent encodes.

We trialled three depth task variations – saliency-weighted mask, distance-based
mask, and semantic-based mask on the class ‘floor’. It was eventually found that
none of these methods performed significantly well to be reasonably justified, so we
proceeded with vanilla depth estimation in the experiments. The outcomes of the
weighted depth tasks are reported as follows.

3.3.1 Saliency-Weighted Depth

Attention is known to be an extremely important mechanism in active vision to
select the most relevant information for visual processing [57]. In computational
terms, the model’s saliency map shows the areas of the input image that it focuses
on to solve its training task. We hypothesized that an active agent should be
better at processing areas of the input image that are relevant for movement or
navigation. Thus, weighting the pixels of the depth map with the agent’s saliency
map may result in better performance in the depth estimation task.

Saliency is extracted from a pretrained active agent by averaging the gradients
given an input image. The saliency map is computed for every image in both the
training and testing sets, then applied to the loss function as a weight for each pixel
during training 1. Figure 3.4 shows sample model saliency maps from navigation
agents trained on different tasks. The first two RGB-input agents (PointNav and
ForwardNav) are trained by us. The specifics of these task objectives are described
in Chapter 6 as their implementation is not highly relevant here. The last column
is an RGBD-input ObjectNav agent trained and provided by the Habitat team at
Facebook AI Research. We include it as reference since it is good at identifying
navigable spaces and target zones, so its saliency map is considered to be more
optimal for navigation using depth information. In contrast, the two RGB models
seem to fixate randomly on areas that are not interpretable, so it is unclear if their
saliencies are actually ‘good’.

Figure 3.5 shows a comparison of the training loss of the saliency-weighted depth

1The saliency map computation and weighting was implemented by another student.
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Figure 3.4: Saliency maps from three models: RGB PointNav agent, RGB For-
wardNav agent, and RBGD ObjectNav agent.

(left) and the vanilla depth (right). This analysis was done informally with the
intention of doing a visual review of the results. In each figure, the top run is a
frozen scratch agent, the middle run is the frozen pretrained ForwardNav agent, and
the bottom run is the unfrozen scratch agent. The same pretrained agent was used in
both trials to showcase its relative performance in comparison to frozen and unfrozen
scratch encoders. Surprisingly, we do not observe a significant improvement in
the agent’s relative performance. This was repeated for agents trained on other
embodied tasks (including the RGBD agent) and the same result persisted. Due to
this outcome, we decided to not pursue saliency weighting.

(a) Depth estimation with pixels < 4m. (b) Vanilla depth estimation.

Figure 3.5: Comparison of distance-weighted and vanilla depth estimation

3.3.2 Distance-Masked Depth

Inspired by natural non-linearities in human vision where depth sensitivity is de-
creased at far distances due lowered resolution of depth cues like convergence and
motion parallax, we mask out all pixels more than 4 meters away from the image
plane. This is done simply by not including these pixels in the loss computation.

Figure 3.7 shows a comparison of the evaluation loss on the distance-masked depth
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and vanilla depth tasks. While there is a slight observable improvement with
distance-masking, we did not deem it to be significant enough to justify switch-
ing to. The experiment repeated on masking out pixels over 2 meters away showed
visually similar results. Perhaps distance-masking (or a more sophisticated form
of distance-weighting) can be incorporated into a future perceptual metric, but we
decide to disregard it for now.

(a) Depth estimation with pixels < 4m. (b) Vanilla depth estimation.

Figure 3.6: Comparison of distance-weighted and vanilla depth estimation.

3.3.3 Semantic-Masked Depth

Similar to the idea of saliency-weighting, here we focus on a particular semantic
class, the ‘floor’. The floor plane is interesting in two parts. 1) It represents the
navigable spaces, which should be important for embodied agents. 2) The depth of
the floor is very predictable if perspective is understood. Since none of the floors in
the environment are known to have slopes, then all of the ‘floor’ pixels at the same
height in an image would have the same depth, making it a computationally simple
problem.

Due to the reason that the problem is easy to optimize, we find that resulting losses
have very low values, and are consequentially highly noisy. Through examining the
predicted depth maps, it is apparent that the transfer learning model converged to
a local minimum, where it predicts the same depth gradient for each image. This
fulfills the loss objective perfectly and there’s no advantages to having a good visual
encoder. Thus, we deem that the investigation was ill-posed for the given semantic
class. A possible idea to try in the future is estimating distances of collider objects,
but this is harder to build a dataset from.

3.4 Other Perceptual Metrics

In this project, for the ease of implementation, we focus on pixelwise vanilla depth
estimation. However, it is undeniable that intelligent perceptual understanding is
much richer and complex, involving higher order cognitive functions and reasoning
abilities. For example, [11] shows that embodied RL agents trained in interactive
environments learn representations of object permanence, free space, and contain-
ment. Other candidates for tasks can be semantic scene understanding [58], affor-
dance reasoning [59], and violation-of-expectation prediction [60]. These skills are
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(a) Depth estimation with floor pixel. (b) Vanilla depth estimation.

Figure 3.7: Comparison of saliency-masked and vanilla depth estimation.

apparent in human abilities, but such datasets would result in too large of a domain
gap to be used in this project context.

In parallel to this work, we are also investigating automated methods for mining
metrics/losses that better captures the visual non-linearities that embodied agents
learn, instead of testing out each one manually as the previous section does 2. In
addition to depth estimation, we would also expand to include other perceptual
tasks, forming a set of skills that represents the basic dimensions of perceptual
intelligence, upon on which any visual system can be evaluated. With a complete
set of perceptual abilities, we can holistically evaluate different embodied tasks
trained agents with more fine-grained nuances and draw more precise conclusions.
But of course, this is all very theoretical at the moment.

2The metrics mining project is conducted by another student.



Chapter 4

Technical Implementation

This chapter describes the technical implementation of the RL agent and the trans-
fer evaluation learning framework. The merit of the experimental results hinges
on the implementation decisions of the APL, which is of course not without some
limitations. However, emulating biological or ecological concepts computationally
has always been a challenge that requires a number of tradeoffs to preserve imple-
mentability, complexity, and time and resource requirements. With that being said,
the focus of this project is not in selecting the best technical design 1, but rather
the experimental design, which is covered in Chapter 5.

4.1 RL Agent

The recent resurgence of reinforcement learning parameterized by deep neural net-
works (DRL) provides a powerful and flexible technical platform to support active
learning agents [61]. Previous high-dimensional intractable problems can now be
solved with relative ease, sometimes even improving upon human performance [62].
DRL is also no doubt the method of choice for problems centered around learning
action policies, which gives our work practical implications for being incorporated
into future research. As in typical RL problem setups, we employ an agent that ob-
serves the current state st at time t, selects an action at based on its learned policy,
and then transitions to the next state st+1 and receives a reward rt+1. The reward
function that determines rt for each state and action formulates the embodied task
objective (which is fully detailed in Chapter 5).

4.1.1 RL Architecture

The agent itself does not receive raw inputs of the state, which are 128x128x3
RGB images of the environment, but rather state representations generated through
passing the inputs into a visual encoder (ResNet-18 [63]) and a single-layer gate
recurrent unit (GRU). The GRU is a mechanism which allows the propagation of
previous states into the current state processing, which enables memory of previous
timesteps. The ResNet-18 is initialized with random values in Experiment A.

1The major design choices of using RL and transfer learning were made before starting.

14



15 4.1. RL Agent

For Experiment B, it is replaced by a ResNet-18 encoder pretrained on depth
estimation using a large baseline dataset sampled in the same way as the transfer
learning dataset from Section 4.2.

The output action can be one of three choices from: {turn left 30°, turn right 30°,
go forward 0.25 meter}. The restrictive action space does represent one of the
major limitations. There is no fine grained motor control, height variations, speed
modulation, sensor tuning, or even physical interactions with the environment due
to the constraints of the simulator. Upon the executing the action, the agent’s
position in the environment is updated and the input images are reflective of the
new state.

We implement the RL agent with a proximal policy optimization (PPO) algorithm
[64] in an actor-critic architecture 2. To summarize its advantages, PPO restricts
the size of the policy update through clipping a surrogate policy gradient objective
function, resulting in better stability and sample-efficiency for training. Otherwise,
the high variance of training can cause the policy updates to be too large and
venture outside of the trust region and destroy the policy altogether. The overview
of the DRL components are presented in Figure 4.1. All work was done using the
PyTorch library [65]. The hyperparameters were kept consistent since the objective
is not to achieve competitive performance on training tasks, but to hold all non-task
related parameters constant.

Figure 4.1: RL agent architecture.

4.1.2 Training and Environments

For the training environment, we use the Habitat simulator [55] with the Gibson
dataset of indoor environments, which captures real-world 3D spaces with varying
levels of navigation complexity [1]. Habitat-Sim is noted to be one of the only
existing simulators that supports realism, however it does lack advanced physics
and interaction abilities [66]. Since we are concerned with navigation-based tasks,
interactivity is less important in this scope.

Due to computational limits, only a maximum of 15 environments can be run in
parallel for training the agent, which we divide into 10 fixed training environments
and 5 fixed evaluation environments. The 10/5 training-evaluation split was used
for a majority of the task training, with the exception of highly complex tasks that
benefited from more diverse training environments, in which case the evaluation
environments were moved to the training set for a 15/0 split.

Each training episode consists of 1000 steps. During updates, the agent samples
from full executed trajectories, which is necessary due to the recurrent aspect of the

2The base DRL architecture and training scripts were implemented by another student prior.
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policy that introduces temporal reliance on previous state transitions in an episode.
Training was manually terminated when it was determined to reached convergence
through its accumulated rewards (either the rewards have reached an optimal value
or they have stopped improving for a significant period of time despite being subop-
timal). This can occur between as little 500 or as many as 8000 training iterations,
depending on the complexity of the training task. We also continued many training
runs past the point of convergence to observe post-convergence perceptual develop-
ment.

4.2 Transfer Learning Framework

In Chapter 3, we compared several weighted variations of the downstream task and
ultimately selected vanilla depth estimation, which is the per-pixel metric depth
from the image plane. This section describes how the visual encoder from the
trained agent is ported into a static setting to predict pixel-wise depth.

4.2.1 Transfer Learning Architecture

The objective of transfer learning is to take the learned visual representations from
the embodied task and evaluate them on a downstream visual task 3. Since our
depth prediction task is pixel-to-pixel, we must upsample the encoded represen-
tations back to an image of the original resolution. We use a modified U-Net
architecture [67], which involves downsampling (encoding) followed by upsampling
(decoding) an image to perform predictions. In our case, we only require the decoder
since the ResNet-18 from the agent’s visual module acts as the encoder.

The original architecture of U-Net introduces a critical feature of concatenating the
downsampled feature maps to the corresponding upsampling steps, which serves to
preserve the resolution of the original image. However, since we want to restrict
the decoder layers to only access the final encoded representations of the image,
these skip connections were removed. In theory, this makes the architecture similar
to a fully convolution network (FCN-32) without skip connections [68]. As shown
in Figure 4.2, we map the pretrained agent’s image encoder output to a U-Net
decoder with five levels of upsampling. This causes the output depth maps to lose
detailed resolution, but it is satisfactory for our use case since we aim to isolate and
compare performance between different encoders. Figure 4.3 shows the difference
in predictions of our transfer learning setup with and without skip connections.

Figure 4.2: Our transfer learning framework.

3The transfer learning pipeline was implemented prior to the start of the semester project.
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Figure 4.3: Input RGB image, ground truth depth, predictions without skip con-
nections, and predictions with skip connections.
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4.2.2 Transfer Training & Datasets

When transferring to the downstream depth estimation task, we freeze the encoder
parameters but leave the decoder to be tuned. The learning rate is set to 0.001,
the batch size to 16, and the training duration to 100 epochs. The training and
evaluation datasets both comprise of samples from 15 unique environments (distinct
from the RL training and evaluation environments). 500 viewpoints were sampled
from each environment, for the total of 7500 samples in each dataset. We use L1 loss
to compute the error in depth at the per-pixel level, where any invalid pixels with
indeterminate depths are masked out. Exponentiated losses like L2 were trialled as
well, but we find that the exponentiation overly magnifies the outlier predictions
and negatively affects the results 4.

As mentioned previously, a larger baseline training dataset was generated for pre-
training the agent’s visual encoder in Experiment B. This was done with 500 sam-
ples from 75 environments, totalling 37,500 samples. These environments are again
distinct from the RL environments and the transfer learning evaluation dataset.

4.2.3 Transfer Performance Measurement

For measuring the transfer performance to depth estimation, we compare the per-
formance of individual RL agents to standardized baselines of frozen and unfrozen
scratch encoders. The frozen encoder’s random weights are preserved but the un-
frozen encoder is allowed to tune its parameters, leading to better performance on
the loss. We use Equation 4.1 to evaluate an agent against the frozen and un-
frozen scratch models, where m stands for the metric (L1 loss on pixelwise depth
estimation). This is called this an agent’s relative transfer performance (RTP).

RTP (agent) =
m(frozen)−m(agent)

m(frozen)−m(unfrozen)
(4.1)

Specifically, we take the average evaluation loss of the last 40 transfer training
epochs, which is approximately when transfer training has converged in all runs. To
mitigate effects from the stochastic nature of training, m(frozen) andm(unfrozen)
are computed as the average of three runs for the frozen and unfrozen encoders.
The individual agents’ encoders were not able to be evaluated multiple times due to
time constraint, however it is observed that the variations between repeated transfer
trials are not significant. However, we do evaluate a single agent’s encoder at various
checkpoints of the RL training to record any variations as the agent approaches and
proceeds past convergence.

4The loss comparison between L1, L2, and L4 [69] losses were performed by another student.
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Experiments

Now that the motivation and technical implementation have been established, we
move onto the two sets of experiments that each investigates a respective direction
of the APL. This chapter provides an overview of every embodied task trained and
Chapter 6 cover the qualitative and quantitative results and observations.

5.1 Experiment A: Effect of Action on Perception

To reiterate the objective, we want to probe the embodied task parameters through
varying the reward on specific axes and observe the downstream transfer perfor-
mance of the visual systems that develop. These axes of variations can be either
intra-task (changing the high-level task objective) or inter-task (changing imple-
mentation details of the task). As mentioned, Habitat-Sim does not support inter-
activity, so the domain of embodied tasks is restricted to either motor movement,
visually-guided navigation, or localization tasks. Movement tasks do not have any
navigation components, as the agent just needs to execute a series of motor actions.
Visual search tasks, however, require some level of visual information processing,
whether for identifying targets, landmarking, avoiding collisions, and/or path plan-
ning.

An embodied task is parameterized by a reward function, and as such each em-
bodied task we implement falls into one of the following task objectives: Random,
ForwardMove, ForwardNav, ObjectNav, PointNav, and PathIntegration. Figure 5.1
shows the progression of the task objectives from easy to difficult as well as the
high-level skill dimension introduced for each. While we operate within a finite list
of task objectives, a single objective, such as ForwardMove, can be defined through
an infinite combination of rewards values. Using defined task objectives helps with
organizing our experiments to align with existing benchmark experiments in em-
bodied RL research.

For specific training parameters and inter-task reward variations of each embodied
task trained, refer to Table 5.1. In total, we train 15 embodied tasks distributed
across the six aforementioned task objectives – each one is described in the next
paragaphs. The inter-task reward variations fall into four categories: collision-
based, which penalizes for environment collisions; destination-based, which rewards

19
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Figure 5.1: Intra- and inter-task variations.

for reaching a certain position or semantic goal and is usually the termination
condition; action-based, which rewards taking specific actions; and object-based,
which only exists for PathIntegration as a reward for finding specific objects in the
environment. Not included in Table 5.1 is the living penalty, which is -0.01 deducted
at each timestep for all agents. Some preliminary tests showed a living penalty may
help with convergence, but its effect was not further investigated.

Random: We start by considering an entirely passive agent, one that receives ran-
dom rewards at every step such that it cannot learn to increase its rewards. The
agent keeps taking random actions and does not converge to any optimal policies
(since there isn’t one), but it still receives visual information. A variation is reward-
ing taking random actions, Random Act, where the agent receives a reward at each
step if all previous actions in the episode are equally distributed. This is an opti-
mizable goal, so we can compare if a convergence in the rewards effect the agent’s
learning abilities. Also categorized into this objective for convenience is the Turn
agent, which is simply rewarded for choosing the left turn action. Altogether, this
category of agents are for evaluating if random or turning movements can support
depth perception development.

ForwardMove: An incremental skill is to train the agent to reach a forward des-
tination. The basic Forward 3m task can be achieved without any visual input
at all, as it only requires to select go forward until it reaches its 3m destination,
upon where the episode would terminate. By moving in a straight line, the agent
should receive strong motion parallax depth cues, thus this objective investigates
if the mere presence of depth cues induces learning. Since the training is fast and
straightforward, we also try several reward variations, such as adding an action-
based reward (Forward Act 3m) increasing distance of the destination (Forward
5m), and using a collision penalty (Forward 3m Collision). The most significant
is the collision penalty, as we reason that the agent needs to understand depth to
some degree to prevent collisions (although it is also possible for the agent to learn
an internal model of the environment and which areas to avoid).

ForwardNav: The next skill to integrate is navigation. Instead of moving forward
in a clear path, the ForwardNav 3m agent now must navigate to a forward location
3m in front of its spawning location, but its path may be interrupted by furniture or
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Task

Objective
Task Name

Rewards

Action Collision Destination Object

Random

Random 0 0 0 0

Random Act 0.1 0 0 0

Turn 0.1 0 0 0

ForwardMove

Forward 3m* 0 0 25 (3m) 0

Forward Act 3m 0.1 0 25 (3m) 0

Forward 3m Col.* 0 -0.5 25 (3m) 0

Forward 5m 0 0 25 (5m) 0

ForwardNav
ForwardNav 3m 0 0 25 (3m) 0

ForwardNav 3m Col.* 0 -0.5 25 (3m) 0

ObjectNav
ObjectNav 0 0 25 (door) 0

ObjectNav Col.* 0 -0.5 25 (door) 0

PointNav
PointNav 0 0 25 (coord) 0

PointNav Compass 0 0 25 (coord) 0

PathIntegration
PathIntegration* 0 0 25 (home) 5/obj

PathIntegration Col.* 0 -0.5 25 (home) 5/obj

Table 5.1: Reward parameters of all embodied tasks trained in Experiment A,
where * denotes the training was repeated in Experiment B
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walls. This type of navigation is based on localization, not visual search. It is more
difficult to solve and absolutely requires visual input, as changes in the RGB input
is the only way the agent can know if its path is blocked or not (the agent doesn’t
get its location). As with the ForwardMove objective, we test out a variation with
an added collision penalty ForwardNav 3m Collision.

ObjectNav: ObjectNav (object-goal navigation) is a task introduced by [70], which
specifies the agent’s goal as navigating towards an instance of a given object class.
The task is notoriously difficult to optimize, so we do not focus on solving it at a high
level of complexity. In traditional implementations, the agent may be asked to find
an object from any class from a predefined list. We change it to an easier termination
condition, where reaching any ‘door’ would be counted as success. ‘Door’ is chosen
as the target semantic class since it is the only one that is present in all training
and evaluation environments. Again, a collision variation ObjectNav Collision is
trained.

PointNav: PointNav 1 (point-goal navigation) is defined by [70] as navigating
towards a given coordinate location. We attempt two variations of the task: a) using
a unique coordinate but giving the agent access to a ‘compass’ direction pointing
towards the destination alongside the state information (PointNav Compass), and
b) giving the agent a unique coordinate as the only input (PointNav). Since these
are technical design choices in the architecture and input, we do not consider these
as reward variations. The baseline version of PointNav, where the same coordinate
is given each time, can be thought of as ForwardNav.

PathIntegration: Lastly, we introduce a biologically-inspired task called PathIn-
tegration, which is the mechanism used by animals to return home [71]. It is shown
that animals that take complex paths in their journey can still return home using a
direct route, indicating that they keep track of their position and orientation even
without visual cues [72]. To add in a visual search component, we place a number
of ‘food’ objects in the environment within a certain radius of the starting position.
A few variations were experimented with, but it was decided that 2-7 meters search
radius presented a suitable challenge to the agents. The agent receives rewards for
collecting one or more ‘food’ objects, and upon doing so, are rewarded additionally
if they return home. We also test with a collision penalty PathIntegration Collision.

5.2 Experiment B: Effect of Perception on Action

The second stage of experiments focus on completing the APL through testing if
the pre-encoded knowledge of depth would benefit training active agents. The setup
is simple, as described in Chapter 4, the visual encoder in the agent is pretrained
on depth estimation such that the agent commences training with a good under-
standing of pixel-wise depth.

Due to time constraints, not every embodied task was repeated with the pretrained
depth visual encoder. Complex training regiments, such as for navigation tasks,
takes several days to a week to reach convergence, and the policy learnt may not
even be completely optimal. We therefore selected only six agents to repeat with
depth pretraining: Forward 3m, Forward 3m Collision, ForwardNav 3m Collision,
ObjectNav Collision, PathIntegration, and PathIntegration Collision agents to re-
peat with the depth pretraining (these agents are indicated with * in their names in

1PointNav is implemented and trained by another student.
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Table 5.1). These represent a variety of tasks objectives that require either no visual
information, or some form of visual information for collision avoidance, navigation,
and object search.

The visual encoder was allowed to be tuned during the agent’s training. This was
done to observe how the agent’s perceptual requirements might deviate from its
initialized state of optimized pixelwise depth prediction. Of course, our analysis
cannot fully reveal what perceptual tasks the trained encoder has reweighted itself
to optimize performance for, since we lack the ability to evaluate on other tasks and
metrics. However, if the downstream transfer performance deteriotes, this would
indicate that good depth estimation is not necessary or optimal to perform our set
of embodied tasks.

According to [41], metrics for comparing improvements in RL performance include
reward jumpstart, asymptotic performance, and time to threshold. These are il-
lustrated graphically in Figure 5.2. In particular, jumpstart and time to threshold
would indicate improvements in sample efficiency. Higher asymptotic in the evalu-
ation environments would indicate better generalization to unseen environments.

Figure 5.2: Measurable improvements in RL training from [41]
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Results

6.1 Experiment A: Effect of Action on Perception

This section showcases the primary results of Experiment A. The relative transfer
performance (RTP) of each agent is recorded after its training converged 1. This is
can be seen in Figure 6.1, which organizes the task objectives with colour coding.

Figure 6.1: Relative transfer performance of each agent in Experiment A, where
�denotes agents that did not reach convergence or finish training.

In summary, the range of RTPs spans from -64% worse than scratch (Turn) to

1In most cases, we attempt to train the agent to convergences, other in situations where the
reward cannot be optimized or the task is too complex to fully achieve within a few days.

24
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38% better than scratch (Forward 3m Collision). Figure 6.2 shows the outputs
generated by the best and worst models on evaluation images. The best model is
able to capture detailed depth discrepancies of the room better, such as the kitchen
island in the 2nd row and the extended back hallway in the 3rd row.

Figure 6.2: Input RGB image, ground truth depth, Turn agent predictions (worst),
and Forward 3m Collision agent predictions (best).

It should also be noted that due to the inherent randomness and instability of
RL, our reported numbers would likely fluctuate using other seeds. As an example,
ForwardNav 3m Collision was performed twice. The first runthrough yielded a good
policy with high RTP, but the second runthrough did not converge well and resulted
in a negative RTP. It is not clear how robust these data points are as training each
agent takes far too long to repeat multiple times. However, given that the nature
of some of the tasks are very similar (such as Forward 3m and Forward 5m, which
resulted in similar RTPs), they can serve to provide an approximate estimate of
intra-task variance.

We strive to evaluate each agent approximately at the checkpoint that its rewards in
the evaluation environment reached convergence, but this method was not rigorously
enforced since it relies on estimating visually if/when the agent has converged. Some
agents (PointNav, PointNav Compass, and ForwardNav 3m Collision) were trained
under the 15/0 environment splits, which is noteworthy as a higher number of
training environments speeds up training and improves overall performance. The
PathIntegration agents were kept to a 10/5 environment split, but it became evident
that training would take too long, so their training runs had to be terminated early.
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6.1.1 Effect of Task Objectives

This section briefly discusses and patterns observed at the task objective level.

Random: Categorically, the Random agents performed the worst in terms of RTP,
with all three agents being considerably worse than frozen scratch. The optimizable
version, Random Act, did not contribute any improvements. It is interesting to note
that the Turn received the worst RTP score at -64%. It was initially suspected
that the turning angle of 30°is too large for dynamic depth cues to be coherently
preserved from frame to frame. If the jump in angle is too big, then the agent won’t
be able to learn from the motion parallax. However, this is actually disproven by
re-training the Turn agent with a 5°turning angle, but no improvements in RTP
were observed.

ForwardMove: Somewhat unexpectedly, the simple Forward agents categorically
outperformed all other agents with RTPs between 35 - 38%. With the exception
of Forward 3m Collision, none of the other agents actually require any depth un-
derstanding to develop optimal policies. A theory to present here is that forward
movement may be much richer in depth cues than turning movements, which is
why Forward agents are better at depth estimation than Turn agents. This can be
explained by that depth cues from motion parallax are very strong in an agent that
executes linear motion in empty spaces, which puts the agent within view of room
furnishings, doorways, and floor edges, which are all feature-rich.

To further explore the role of vision on training forward movement, we compare the
training a blind and a sighted agent on Forward 5m. Their RL performance curves
are shown in Figure 6.3, demonstrating that the blind agent was able to converge
within a shorter training period. Therefore visual information could possibly be a
deterrence for learning the task rather than an asset, although this could also be
attributed to initialization.

(a) Blind agent. (b) Sighted agent.

Figure 6.3: Comparison of RL training performance of a blind and sighted agent
on Forward 5m, where the bottom axis is training iterations.

Taking it one step further, we resumed the converged blind agen as a sighted agent
(as in the training was resumed post-convergence with RGB inputs). The pro-
gression in the RTP at various checkpoints of the blind training and the resumed
training are shown in Figure 6.4. The policy of the agent did not observably change,
yet the RTP immediately improves after visual input is reinstated. This means that
the visual encoder is undergoing changes while the policy is not, perhaps pointing
to distinct visual and motor update mechanisms. This also indicates that the mere



27 6.1. Experiment A: Effect of Action on Perception

presence of good depth cues can induce learning, even after convergence when there
is no longer need to learn anything. The mechanism which determines how the
agent tunes its visual encoder is not fully understood in the context of this project,
but can potentially be explored further.

Figure 6.4: Progression of the RTP of an agent resumed from blind.

ForwardNav: ForwardNav was a challenging task to train and resulted in highly
varied RTP results from -56% with ForwardNav 3m � to 28% with ForwardNav
Collision. The agent is spawned at random locations in the environment without
verifying if it has a clear path towards its destination and if it needed to navigate
around blockages and walls. Generally, the agent is able to solve simple variations
of this task, but not when it has to traverse through multiple rooms or make large
detours. As state previously, we tried training multiple times, but only converging
to a good policy in one instance of ForwardNav Collision. The non-convergent
agents had sub-optimal policies that resembled Random agents, which means they
did not receive good depth cues from their erratic motion. No conclusions can be
confidently drawn from ForwardNav other than the quality of depth cues seems to
be the strongest determinator of RTP.

ObjectNav: As a reminder, ObjectNav agents were trained to find doors, upon
doing which yields a successful reward and termination of the episode. While both
agents yield satisfactory performances, their 19% and 26% RTPs are better than
scratch but worse than most other agents. A problem identified in the problem set
up is that the number of doors in the environment is highly excessive. Figure 6.5 de-
picts three sample bird-eye-view maps of Gibson training environments, where each
coloured marker represents a door. As seen, an agent spawned in the environment
would be likely to be nearby a door, resulting in a short and simple trajectories.
It is not clear if the trained agents actually learned to find doors, or simply to do
enough exploration to serendipitously stumble across doors.

Comparing the training and evaluation environment performances of ObjectNav
Collision in Figure 6.6, it is evident that the agent is overfitting to the training en-
vironments and generalizing poorly to evaluation environments. A combination of
the short travel trajectories and the generalization problem can reduce the quality
of the depth cues and affect perceptual learning. In general, none of the other nav-
igational agents (PointNav and PathIntegration) outperform ForwardMove agents
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Figure 6.5: Bird-eye-view of Gibson environments and location of doors.

in terms of RTP at the early stages of convergence.

Figure 6.6: Comparison of RL training and evaluation performances of ObjectNav
Collision.

PointNav: PointNav theoretically should have been similar to ForwardNav, but
the two trained agents actually reach high RTPs of 30% and 34% with the added
compass. A contributing factor here might be that 15 training environments were
used, so it’s difficult to project how much RTP would degrade if training was re-
peated with 10 environments. PointNav was also the only task objective that
received any additional inputs – the destination location and the optional compass
travel direction. Again, it’s hard to quantify how much this change might have
impacted the RTP. The PointNav agents are explored more in Section 6.1.3, which
looks at RTP trends post-convergence.

PathIntegration: As stated previously, a huge limiting factor in evaluating the
PathIntegration agents is that neither had time to fully converge. Rather, they
were trained to 7000 iterations, a point where noticeable improvements in rewards
stalled. This could mean that the task is too difficult to fully optimize, but it’s also
possible that sudden policy improvements can happen later on. To compare, the
PointNav agent trained on 15 environments took 8000 iterations to converge.

Through observing recordings of training episodes, we see that the agents are able
to find food objects successfully, but struggle more with returning home. In some
cases, they are able to return by seemingly random exploration. Their movements
are still erratic at times, which we now know reduces the quality of depth cues.
Thus, it then makes sense that the RTP of pre-convergence PathIntegration agents
are better than scratch but still at middling levels.



29 6.1. Experiment A: Effect of Action on Perception

6.1.2 Effect of Inter-Task Reward Variations

Action Rewards: The embodied tasks denoted with “Act” (Random Act and
Forward Act 3m) gave an additional reward for selecting the correct action at each
step. This test is to probe if rewarding motor actions would lessen the involvement
of the visual system. The Random Act agent gives inconclusive results as it likely
did not see meaningful depth cues, but the Forward Act 3m agent is slight worse
than Forward 3m despite converging faster. This slight discrepancy may be showing
the shift of attention from visual to motor information, but is not significant enough
to draw conclusive results.

Collision Penalty: The collision axis of variation compares if sensitivity to envi-
ronmental collisions would heighten the agent’s awareness of depth. The results are
somewhat conflicting as collision penalties improved the RTP of ObjectNav, Forward
3m, and ForwardNav 3m, but lowered the RTP of PathIntegration. However, these
differences are either very minute or can be affected by initialization. In addition,
ForwardNav 3m was highly difficult to train and we are not able to determine the
conditions for why some runs succeeded and others failed. While depth perception
is logically seen to be useful for collision-avoidance and some initial results seem to
support this theory, more repetition is needed.

Travel Distance: The only explicit distance comparison experiment we executed
is Forward 3m and Forward 5m, which yielded very little difference in RTP – 35%
and 36% respectively. However, there is some indication that longer travel dis-
tances, especially in the context of navigation, requires more intelligent policies.
We discussed that ObjectNav has shorter trajectories and lower RTP in comparison
to other tasks. In a prior experiment, PathIntegration was tested with a smaller
search radius of 0-5m, which means the agent does not have to go very far or re-
member its location, as random exploration can result in high returns. As follows,
analysis of the agent’s visual saliency and RTP to depth estimation showed poor
results 2.

6.1.3 Perceptual Learning Post-Convergence

In addition to evaluating the RTP of each agent at a singular post-convergence
checkpoint, we actually evaluated each agent at multiple checkpoints pre- and post-
convergence to observe how depth perception abilities develop alongside RL train-
ing. Figure 6.7 shows an example of progressive RTP evaluations of the PointNav
and Forward 3m agents from the 0th iteration to some number of iterations past
convergence 3. When contrasted against the RL performance curves, it is evident
that RTP can keep improving even after RL rewards plateau.

More concretely, Figure 6.8 shows the post-convergence changes in RTP of all agents
that exhibited positive RTPs (so excluding the Random agents). Note that PathIn-
tegration agents are also included here despite not fully converging, but their RL per-
formance curves did show plateauing. Quite remarkably, 9 out of 11 agents showed
positive improvements in post-convergence RTP. The most significant change is the
PointNav agent, which improved its RTP relatively by 23% and was trained up to

2Quantitative results not included as this agent was trained long before the semester project
began.

3“Convergence” is defined flexibly in this context, it just means approximately when the rewards
begin to plateau.
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(a) PointNav RTP. (b) Forward 3m RTP.

(c) PointNav RL performance. (d) Forward 3m RL performance.

Figure 6.7: Progression of RTPs and RL performance for PointNav and Forward
3m agents.
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80,000 iterations, significantly more than any other agent. This is certainly an in-
teresting observation, but the potential of other agents’ RTPs to improve cannot be
estimated since the mechanism of perceptual development is not well understood.
Will they reach the same RTP as PointNav? Or is the best possible RTP attained
with an optimally-trained agent constrained purely by the task requirements? E.g.
an agent that makes use of depth information that has been fully optimized would
have better RTP on depth estimation than an agent that doesn’t require depth.

Figure 6.8: Changes in the RTP of all agents post-convergence.

One contributing factor to consider is the smoothness of the trajectories, as we
know that forward movements generate better depth cues for learning than erratic
motion. This skill would not be reflected well through the raw reward values, as
the only reward that comes into play is the living penalty, which is very small. A
long trajectory filled with unnecessary motions would only receive a slightly lower
score than a fast, direct trajectory. A better way to distinguish this in the future
is to compute the path length of the agent, such as using the ‘Success weighted by
Path Length’ (SPL) metric showing in Equation 6.1. Under our logging capacity,
the path length was not implemented initially, so it would not make sense to redo
a large number of trials to capture this statistic. The information given by SPL
can be useful for finer grained analyses in the future. Thus it is conceivable that
the PointNav agent gradually improved the efficiency of its policy while its rewards
seemingly plateaued.

SPL =
1

N

N∑
i=1

Successi
shortestPathi

max(shortestPathi, agentPathi)
(6.1)

6.2 Experiment B: Effect of Perception on Action

This section examines the results of Experiment B, the RL training performance
of agents with and without the pretrained visual encoder. As mentioned in Chap-
ter 5, the metrics we are interested in are jumpstart, asymptotic performance, and
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time to threshold. The experiment was performed on six tasks: Forward 3m, For-
ward 3m Collision, ForwardNav Collision, ObjectNav Collision, PathIntegration,
and PathIntegration Collision. Figure 6.9 shows the comparison of RL rewards by
depth-pretrained (in blue) and scratch (in red) active agents. All graphs are from
evaluation environments except ForwardNav 3m, which was trained with a 15/0
split. The last row also shows the training environment results of PathIntegration,
which is noted to exhibit patterns of overfitting.

Visual inspection of the reward performance curves is used as the primary evaluation
method. While computational methods can be used as well, a limitation is how
well the smoothing function (a handtuned Savitzky–Golay filter) represents the
original data. Most of the curves are extremely noisy, making it hard to standardize
evaluation criteria (e.g. which region counts as asymptotic performance?)

Neither of the ForwardMove agents saw improvements, in fact, pretraining produced
slower time to threshold and initial lag in performance in both. The asymptotic
results between the pretrained and scratch agents are comparable. ForwardNav
Collision and ObjectNav Collision showed clear improvements in the jumpstart
performance in the initial training region, where most of the negative rewards can
be attributed to collision penalties. Depth pretraining thus can be applied to im-
prove the agent’s ability to learn collision avoidance early on. PathIntegration and
PathIntegration Collision showed comparable performance in the evaluation envi-
ronments between the pretrained and scratch agent, but the jumpstart improvement
is more pronounced in the training environment. The overally asymptotic perfor-
mance is much better in training than evaluation as well, indicating these two agents
experienced significant overfitting, and depth pretraining may be exacerbating it.
The only task that resulted in an improvement in asymptotic performance and time
to threshold is ObjectNav Collision.

6.2.1 RTP Progression

Again, we looked at the progression of RTPs of the depth-pretrained agent as it
learns the embodied task. How the visual encoder would continue to perform on
the depth estimation task is not intuitive to predict. Since the encoder was allowed
to update its weights, we believed it was unlikely that pixelwise depth estimation
would be fully preserved. Figure 6.10 show the depth pretrained agent’s RTP in
blue and the scratch agent in red for the same six training tasks.

The global pattern which emerges immediately is that the pretrained encoder re-
gresses while the scratch encoder improves, often converging towards the same or
very similar depth estimation abilities. This seems to suggested that the training
process pushes the visual encoders towards a set of perceptual abilities that include
depth understanding, but not precise depth estimation. Intuitively this makes sense
as biological agents do not need the ability to estimate distances accurately. Ob-
jectnav ’s pretrained encoder is the only one to maintain an improvement in RTP
over scratch. This can suggest the optimal level of depth estimation performance
is higher than what the scratch agent was able to learn.

An alternative theory may be that the pretraining loses its effect very quickly,
and the encoder reweighting is dominated by learning to process the input images.
This can explain why the RTP of the pretrained encoder undergoes a rapid drop
within the first 500 iterations of training. Since RL training is highly unstable at
the beginning, the visual encoder might also be undergoing significant changes to
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(a) Forward 3m (eval). (b) Forward 3m Collision (eval).

(c) ForwardNav 3m Collision (train). (d) ObjectNav Collision (eval).

(e) PathIntegration (eval). (f) PathIntegration Collision (eval).

(g) PathIntegration (train). (h) PathIntegration Collision (train).

Figure 6.9: RL performance curves of depth-pretrained (blue) and scratch (red)
agents.
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become similar to the scratch encoder.

6.3 Alternative Pretraining Methods

This is a side experiment that spawned out of the limitation of using depth esti-
mation as the pretraining task and the uncertainty about how the visual encoder
learns during training. The question here is what pretrained encoder can be used
in lieu of the depth encoder? While we don’t have any perfect visual systems to
sample from, there is the encoder from the PointNav agent that has been trained
to over 80,000 iterations. It has the best RTP and its policy is observably smooth,
so it serves as a good substitution for the optimal visual system for navigation.

We retrain the PathIntegration Collision agent with the PointNav encoder. Despite
the task objectives being different, both involves localization. The evaluation and
training performance curves for the agent trained with the PointNav encoder is
shown in the left column of Figure 6.11. Similar to what we saw with the depth-
pretrained agent, the evaluation results are noisy and show ambiguous results, but
the training environment see a clear improvement in jumpstart and asymptotic
rewards. This would indicate overfitting to the training environments. Since the
PointNav agent was trained without evaluation environments, we can’t determine
the degree of overfitting of the original encoder, which is problematic and voids
these results.

Another study [48] freezes the visual encoder after transferring it to the RL agent,
showing improvements in training speed and generalization. We also attempt with
frozen weights for the depth encoder and the evaluation and training results are
show in the right column of Figure 6.11. While the evaluation performance again is
similar between the pretrained and scratch agents, the training performance of the
frozen pretrained encoder actually underperforms scratch, but matches its respective
evaluation performance. This indicates the frozen pretrained encoder is less prone to
overfitting, but performance improvements over scratch is still not observed. More
experimentation would need to be done with freezing the encoder to understand its
effects.
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(a) Forward 3m. (b) Forward 3m Collision.

(c) ForwardNav 3m Collision. (d) ObjectNav Collision.

(e) PathIntegration. (f) PathIntegration Collision.

Figure 6.10: Comparison of RTP progression for depth-pretrained (blue) and scratch
(red) agents.
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(a) PointNav Pretrained (eval). (b) Depth Pretrained Frozen (eval).

(c) PointNav Pretrained (train). (d) Depth Pretrained Frozen (train).

Figure 6.11: RL evaluation and training performance curves for PathIntegration
Collision agent with a PointNav encoder (left) and frozen depth encoder (right).
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Discussion

The study presents an experimental forage into evaluating the perceptual abilities,
specifically depth perception, of reinforcement learning agents trained on embodied
tasks. This is an open-ended exploratory topic, as even perceptual learning and
perceptual abilities are still continually investigated in humans. We take inspiration
from the action-perception loop to propose this question, but it is clear that the
experimental results are affected by computation limitations of RL training. Many
factors combine to contribute to the development of depth encodings in RL agents,
making them difficult to disentangle. To bring in practical applications of APL, we
also demonstrate how pretraining active agents with perceptual priors can tangibly
effect RL training. While depth estimation was not necessarily demonstrated to be
the best skill to supplement our specific set of embodied tasks, the approach can
be promising for tackling pervasive technical challenges in RL given an improved
pretraining task and metric.

In Experiment A, we experimentally show that active agents encode depth in-
formation significantly better than scratch encoders, but the quality of depth cues
affect the depth transfer abilities. Random and turning policies notably underper-
form scratch, indicating that turning movements are not optimal for generating
learnable depth cues. Within our limited RL training framework, the agents that
exhibited the best depth transfer performance are the simplest ForwardMove agents,
which violated initial expectations as complex navigation agents were presumed to
learn more depth to fulfill their task requirements. However, our experiments show
that through simply receiving passive visual inputs while moving through an envi-
ronment, agents are able to encode perceptual information that are not required for
their policy (recall the blind agent that was resumed as a sighted agent in Figure
6.4).

The contributions of other task variations are not easily isolable due to many agents
not converging to an optimal policy and therefore not being directly comparable to
each other. With the potential exception of collision-avoidance, none of the other
inter-task or intra-task skill variations are conclusively shown to produce better
depth perception than ForwardMove. To verify any significant contributions of
collision (or other task variations) on perceptual development, more trials of both
RL training and transfer learning need to be performed to quantify their respective
variability. More thought should be put into differentiating the parameters of intra-
task variations and being clear on what embodied skills each task objective trains.
For example, ForwardNav and PointNav Compass are very similar behaviourally,
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so they should theoretically produce similar visual systems. Any discrepancies may
be artifacts from the quality of training and the reward function that the task is
parameterized by.

Observing the post-convergence perceptual learning is also an unexpected finding –
either indicating our measure of convergence is inadequate or that the mechanisms
of perceptual learning and policy learning are more distinct than originally thought.
An cognitive science perspective about perceptual learning is explored in Section 7.2.
To better evaluate the quality of an agent’s policy, we can adopt a more informative
RL training metrics like SPL (Equation 6.1), which accounts for the length of the
path taken in addition to the success of an episode. We can also reweigh the reward
values to penalize for longer paths by using larger living penalties.

Experiment B showed that agents trained on more navigationally complex tasks
generally saw benefits in their jumpstart performance from depth pre-training in
comparison to simpler ForwardMove agents, but again we still lack significance in
the results as several agents were limited by overfitting. The problem of overfitting
can be mitgated by either increasing the number of environments that can be ran
parallel or applying augmentation on the images. It is not shown that asymptotic
performance or time to threshold is improved in the agents, with the exception of
ObjectNav Collision. The visual encoders of both pretrained and scratch agents are
shown to converge towards the same RTP, although it is unknown if this is due to
a condition of visual optimality, or just the natural mechanisms of RL training that
reconfigured the pretrained encoder to be like the scratch one.

[48] and [49] perform larger analyses on how encoding visual priors into the visual
processing of RL agents impact their performance. The main difference is that
the feature encoder for a given mid-level visual task is frozen during the agent’s
training. While we did test with a frozen depth-pretrained encoder, benefits in per-
formance were not observed, although overfitting was reduced. [48] determines that
the top visual features for navigation (similar to ObjectNav) are object classifica-
tion, semantic segmentation, and curvature; and the top features for local planning
(similar to PointNav) are 3D keypoints, normals, and curavture again. The skill
of depth estimation is actually best for Exploration agents, which is an embodied
task that we did not test. Some of the top tasks are intuitive for the embodied task
and other less so, which certify that we would benefit from expanding beyond depth
estimating to include other visual skills.

7.1 Inadequacies of Depth Estimation

The potential irrelevance of depth estimation has been mentioned many times
throughout this report, but a full discussion is warranted given that these experi-
ments depended on depth estimation being a good task, which was not verified by
our results. This led to ambiguity in the analyses as it became difficult to attribute
how much of the depth perception abilities was learned because it was necessary to
the policy, and how much was passively encoded simply as a result of the information
being available – and what is driving each learning mechanism?

Depth was initially chosen for its easily accessible ground truth and its apparent
role in ecological navigation. However, visual intelligence is much more complicated
and may not be able to be broken down into perfectly orthogonal visual tasks bases
which we can interpret. For example, the Taskonomy dataset [40] contains 26 mid-
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level visual tasks, but many surely share the same underlying skills. There exist a
tradeoff here as to if we should pursue breaking down visual skills into independent
dimensions, or if we should build up a metric from a pre-defined set of known skills.
The validation of either metric combination would be difficult as well, as logically a
good visual metric should result in good performance from humans in addition to
trained agents.

If there existed a more relevant perceptual task to evaluate on, we may see the
discrepancies in the RTPs of agents trained on different tasks amplified, such as
elevated performance of the navigation agents in comparison to the motor agents.
[11] also evaluated on normals, classification, affordances, etc. Their experiments
are not directly comparable since they train two agents adversarially in an inter-
active environment, which enabled agents to learn richer representations of their
observations. The game of Cache required agents to play hide and seek with an
object against each other. This added level of task complexity purportedly enabled
agents to outperform navigation agents significantly on most downstream transfers,
with varying levels of improvement between tasks.

7.2 Task-Irrelevant Perceptual Learning

This section briefly highlights an comparable learning phenomenon as what we
observed with motor agents encoding passive visual cues despite not needing them.
There is a term coined task-irrelevant perceptual learning (TIPL), which describes
the ability to learn secondary task cues while training on a separate primary task
[73]. It is proposed that the primary task cues and secondary task cues require
different learning mechanisms which undergo differently staged processing in the
brain, and it is unlikely that focused/sustained attention is needed [74]. However,
this only occurs under the condition that the secondary cues are not strong enough
to distract from learning the primary cues, which it would otherwise be suppressed
by the brain for [75]. There is shown to be a positive correlation with learning the
secondary tasks and the presence of rewards, even if said rewards are unrelated to
the task [76].

How this plays into computational agents is not entirely clear, as it is not so simple
to extend models of cognitive behaviour to artificial intelligence. There are cer-
tainly parallels to point out – namely, our agents learned depth (a secondary task
with apparent visual signals) while training for a different primary task (embodied
navigation) under the presence of a learning reward. However, human perceptual
learning tests were never performed in the context of visuomotor learning, as the
standard TIPL experiements isolate basic visual task dimensions. Something like
depth and navigation is too intertwined into our daily arsenal of skills to properly
investigate in humans through additional training. With that being said, chasing
biologically plausible explanations for computational models and experiments may
be a fruitless pursuit. Even if TIPL is observable in RL agents, the benefits of
it are not clear pertaining to practical applications to RL. This leads to the next
section, which discusses potential pathways of using the technical platform as an
investigative tool for cognitive science instead.
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7.3 RL Agents as Testbeds

Reinforcement learning agents, although limited in their generalizability and ex-
pressiveness in comparison to human cognition, can be used as a computational
model in the field of psychology [77]. Like biological agents, they receive sensory
inputs and use the information to choose an output action for accomplishing a goal
[4]. Such agents can be seen as proxies to biological organisms that develop percep-
tual capacities through training on active tasks like embodied navigation, which is
analogous in the biological domain to the task of finding food or shelter.

In alignment with previous works exploring the usage of artificial agents in the
context of human cognition concepts [78, 11], we take this as an opportunity to add
onto the body of literature. RL agents can be used to explore complex phenomenons
in cognitive science and behavioural psychology that are difficult to test in humans.
Neural networks (and other computational models) can be taken apart, probed, and
run repeatedly with control.

We attempted to break down a high level embodied task into additions of basic
task variations to isolate their individual contributions to the development of depth
perception. While results lack significance and task variations cannot be fully dis-
entangled to be orthogonal to one another another, an emerging picture is still
painted that passive visual signals are encoded through movement and that depth
is potentially useful for solving some embodied tasks. Under more life-like sim-
ulation conditions (interactive environment, binocular vision, richer action space,
etc), we may be able to draw closer approximations to perceptual learning through
behaviours of biological agents.
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Conclusion

In this project, we explore the ability of visual RL agents trained on embodied tasks
to transfer visual encodings to the downstream task of depth estimation, which acts
as a temporary stand-in for general perceptual abilities. We show that agents are
not only able to encode knowledge of depth by simply travelling forwards in an
environment, but that the depth cues generated by smooth movements are possibly
the strongest determinator of an agent’s transfer performance to downstream depth
estimation. Collision avoidant behaviour may also leading to improved development
of depth perception, but repeated tests are needed to verify this observation.

While the original goal was to investigate the contributions of embodied task varia-
tions on perceptual development, this proved to be difficult for two reasons, 1) it is
not understood how relevant depth estimation is to active tasks, so our results may
not generalize to evaluating with other visual metrics; and 2) many agents were
not trained to full convergence, so the quality of of the learned policy at the time
of evaluation became a significant confounder. Despite so, our results successfully
demonstrate a rudimentary linkage between active behaviours and the subsequent
development of visual skills, albeit the development not being driven by the neces-
sity of such skills for acting.

Pretraining agents’ visual encoders on depth estimation prior to RL training results
in marginal effects on the training performance curves. Several agents were prone
to overfitting to their training environments so the effects of depth pretraining were
subdued in the evaluation environments, but it was observed to improve collision
avoidance in two agents, further signifying that depth understanding is necessary
for this embodied skill.

8.1 Future Directions

Here, a few possible directions are proposed:

Perceptual Metric: As mentioned in previous sections, pixelwise depth estimation
should be replaced with a more sophisticated depth metric, or better, a larger
suite of tasks that represent distinct perceptual base tasks. The project conducted
in parallel is investigating this. Ultimately, we need to ensure that the ultimate
perceptual metric is not arbitrary and can be justified as a valid measure of complex
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perceptual intelligence.

Task Training: A better strategy is also needed to verify that trained agents
1) learn optimal or very good policies to maximize the quality of incoming visual
cues, 2) are trained past the point of RL convergence until perceptual abilities also
converge, and 3) are trained on tasks that require good visual intelligence. For
example, [48] found good support of depth estimation in training Exploration and
[11] found that their Cache agents outperformed navigation agents visually.

Diverse Agents: Another avenue to explore is to use pretrained RL agents from
Habitat Challenge 2020, where research teams trained custom RL agents for tasks
like ObjectNav and PointNav in the Habitat simulator. This provides a shortcut to
obtaining an ‘ideal’ navigation agent, which is something for which we currently lack
the ability to quickly train. The only caveat is that these agents receive RGBD in-
formation, which would make depth estimation somewhat redundant as the transfer
task – thereby more reasons to rethink the perceptual metric. It could be possible
that evaluating perceptual skills of trained agents devises an additional dimension
of assessing complex visuomotor agents, which are currently evaluated by RL-based
metrics like SPL.
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