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Abstract
As-is building models are becoming increasingly common
in the Architecture, Engineering, and Construction indus-
try, with many stakeholders requesting this information
throughout the lifecycle of a building. Devices equipped
with RGB cameras and depth sensors being readily avail-
able simplifies the task of capturing and reconstructing an
environment (scene) as a spatial 3D mesh or point cloud.
However, the task of converting this purely geometric infor-
mation to a semantically meaningful as-is building model
is non-trivial. State-of-the-art practice follows a first step
of acquiring the spatial 3D mesh on site and subsequently
resorts in manual or assisted semantic labeling in the of-
fice, where experts often have to work for many hours using
non-intuitive and error-prone tools. To address this inef-
ficiency, we develop HoloLabel, an Augmented Reality
application on HoloLens that allows users to directly and
on-site annotate a scene in 3D with rich semantic informa-
tion while simultaneously capturing its spatial 3D mesh.
Our tool follows a user-in-the-loop protocol to perform the
task of 3D semantic segmentation, i.e., each face of the
3D mesh should be annotated with a semantic label. We
leverage the HoloLens’s Spatial Mapping feature and build
a 3D mesh of the scene while the user is walking around;
at intervals, we apply an automatic geometry-based seg-
mentation algorithm to generate segmentation proposals.
The user then assigns predefined semantic labels to the
proposals and – if necessary – uses a virtual paintbrush to
refine the proposed segments or create new ones. Finally,
the user has the option to add rich semantic descriptions
(e.g., material, shape, or relationship to another object)
to segments using voice-to-text technology. We aim to
lay the groundwork to leverage upcoming mixed reality
devices for intuitive synchronous as-is semantic building
model generation directly in the real world.

Introduction
In recent years, the Architecture, Engineering, and Con-
struction (AEC) industry is exploring ways to acquire faster
and more accurately as-is information about the built en-
vironment. In several countries, as-is building models are
becoming a requirement (e.g., USA (Administration 2022)
and United Kingdom (Blackwell 2012)) and stakeholders
are requesting this information throughout the lifecycle
of a building to perform several downstream tasks (e.g.,
facility management or for renovation purposes).
State-of-the-art practice for creating an as-is building
model consists of two steps: (i) 3D reconstruction, where
the environment’s 3D geometry is captured on site as a
3D spatial mesh or point cloud with a sensing device,

* Both authors contributed equally

such as a laser scanner or an RGB-D camera; and (ii) se-
mantic modeling, where - given the previous output - the
user provides semantic information about the 3D geome-
try. Recent advancements in capturing systems allow for
a faster and increasingly accurate 3D geometric represen-
tation of the environment (scene) with the use of easily
portable devices, such as those that are handheld (e.g.,
Kaarta and Leika BLK2GO) or in backpacks (e.g., NavVis
VLX and Leica Pegasus). Such devices can provide a 3D
reconstruction of a large-scale, highly cluttered, and highly
partitioned space in 1/10 of the time when compared to tra-
ditional tripod-based systems1.
However, the step of semantic modeling has not seen sim-
ilar progress. After capturing the environment, the user
is required to return to the office and use specialized 3D
software in order to create the as-is building model. This
process is performed primarily by trained experts using a
2D screen and can take several hours for a single room
(Nguyen et al. 2016), which is non-trivial in terms of labor
time and costs (Brilakis et al. 2010, Woo et al. 2010, Jung
et al. 2014). Extensive literature exists on automating this
step that explores fully automatic semantic segmentation
of 3D spatial data (e.g., (Tchapmi et al. 2017, Choy et al.
2019, Qi et al. 2017)). However, these approaches are
neither accurate nor flexible enough for the AEC industry
requirements. To meet these requirements, a user-in-the-
loop approach is more appropriate (e.g., (Dai et al. 2017,
Armeni et al. 2019, Wong et al. 2014)), since it allows to
leverage the most out of automation while addressing ac-
curacy concerns with user participation. However, despite
addressing issues of accuracy and flexibility, the labeling
process is still disjoint and offline from the data captur-
ing step, introducing inefficiencies in the building model
generation pipeline (e.g., when on-site one can make faster
decisions on semantic labels). A more intuitive approach is
to perform the capturing and labeling steps synchronously
while on-site.
Augmented Reality (AR) technology, such as the Mi-
crosoft HoloLens (Microsoft 2022g), provides a technical
platform to implement such an online capturing and la-
beling tool where the user is localized in the scene and
can simultaneously capture, segment, and label the 3D
spatial data in a natural and interactive method. The fi-
nal semantically augmented data, once exported from the
live annotation session, would require only minimal addi-
tional processing. The HoloLens comes with the built-in
functionality for capturing and reconstructing spatial 3D
meshes. Additional libraries, such as the Mixed Reality
Toolkit (MRTK) (Microsoft 2022f), offer capabilities to

1This is an empirical finding of the authors after performing several
experiments with a variety of devices.
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Figure 1: User Workflow: When the user enters a new room, (a) we first reconstruct the 3D scene. Next, (b) the scene mesh is sent to a
Python server for automatic segmentation. The user then (c) processes these segmentation proposals using a virtual brush. Finally,
the user can (d) add richer semantic descriptions into the scene using a voice-to-text tool. The user can then proceed with the next

room or export the annotations.

develop interactive augmented user interfaces.
In this work, we introduce the HoloLabel, an AR 3D
scene semantic labeling tool with which non-expert users
can directly annotate the semantic information of a scene
on-site while simultaneously capturing its spatial infor-
mation. Initially, the continuously captured 3D mesh of
the room is automatically segmented into smaller geomet-
rically meaningful segments (segmentation proposals) in
the background, using a remote Python server. Once com-
plete, users can assign semantic labels to these segments
and – if necessary – they can edit the proposals with in-
tuitive hand gestures using a virtual painting tool. Richer
semantic descriptions (e.g., material, shape, and color) can
be optionally added via a voice-to-text tool and assigned
to segments using a virtual pin. After capturing the scene,
the semantic annotations and the 3D mesh are exported for
downstream tasks.
The contributions of this paper can be summarized as:

• We develop a gesture-based HoloLens application for
on-site and online user-in-the-loop 3D semantic scene
reconstruction and labeling.

• We allow to easily customize semantic descriptions
using the HoloLens voice-to-text feature and place
description pins on the 3D mesh of the scene.

• We evaluate the efficiency and efficacy of the tool in
a small-scale user study.

Related Work
Semantic Annotation Tools for 3D environments
There exists a variety of semantic annotation tools for 2D
and 3D data, however a detailed review is outside the scope
of this paper. Here, we focus on the following two aspects
of 3D data annotation systems.

Automation & User-in-the-loop

Several works perform a first step of high-level segmen-
tation to streamline the annotation process. Wong et al.
(2014) developed the SmartAnnotator, a semi-automated
pipeline for labeling RGBD images. A learning system
proposes semantic labels on which human annotators in
the loop provide feedback. The system can also improve
its abilities incrementally through learning from previously
labeled scenes as priors. Armeni et al. (2019) employ a
pretrained 2D instance segmentation network to provide

initial proposals on RGB images that are automatically
aggregated on the underlying 3D mesh. Users are then
asked to verify and edit the aggregation results on 2D
images. Nguyen et al. (2021) begin with automatically
detecting 3D bounding boxes in LiDAR point clouds and
include a user-in-the-loop component to identify missing
annotations with a single click. Others employ lower-level
automation to accelerate annotations. Dai et al. (2017) pro-
pose such a system, where a web-interface is used for the
manual annotation of 3D mesh models of indoor spaces.
Specifically, it begins with an over-segmentation of the
scene using a graph-cut based approach and users are then
prompted to label these segments with the goal of 3D ob-
ject instance segmentation. Nguyen et al. (2016) has a
similar starting point; the resulting over-segments are fur-
ther grouped into larger regions based on geometry and
appearance cues. These regions are edited by users to
get the final object semantic annotations. Russell & Tor-
ralba (2009) employ object segmentation masks and labels
from 2D annotations to automatically recover the 3D scene
geometry. We follow a similar setup of an automated low-
level initial segmentation, followed by a user-in-the-loop
approach for refinement and semantic annotation.

Virtual & Augmented Reality Systems
The above methods are restricted on a traditional 2D inter-
action setting. However, semantic annotation tools have
also been developed as applications in virtual and aug-
mented reality. Miksik et al. (2015) use a laser pointer as
an AR paintbrush to allow user-defined outdoor scene seg-
mentation. Saran et al. (2018) create an iOS application for
simultaneous scanning and user-defined bounding box an-
notation. Ramirez et al. (2019) take a creative approach by
gamifying scene labeling as a first-person shooting game.
Spiekermann et al. (2019) focus on semantic annotation
of text in 3D and place users in a virtual reality headset
to perform annotation through simple gestures and textual
descriptions. Zingsheim et al. (2021) present a collabora-
tive labeling system in virtual reality, where remote users
provide sparse annotations on the 3D mesh.
There is a gap concerning annotation tools that use market-
available AR headsets such as the Microsoft HoloLens,
which is increasingly used by developers and profession-
als. The advantage of an AR headset is that the annotator
can interact with the 3D scene in a more intuitive and safe



manner than through a tablet or phone. Also the collabora-
tion of Trimble and HoloLens has created an AR hard-hat
that can be used in construction sites (Trimble 2022), hence
increasing the applicability of such a tool in AEC industry
for existing and under construction buildings.

Automatic 3D Segmentation Methods

Automatic 3D segmentation can be categorized in seman-
tic segmentation, which groups a scene into segments that
belong to the same semantic class (e.g., chair or window),
and geometric segmentation, which segments the scene
into segments with similar geometric properties. Many
algorithms perform 3D scene segmentation by process-
ing RGB-D images (Michieli et al. 2019, Guo & Hoiem
2013, Gupta et al. 2013). Other approaches directly seg-
ment 3D visual data, the majority of which operate on
3D point clouds (Poux & Billen 2019, Qi et al. 2017).
Bassier et al. (2020) show that performing segmentation
on mesh-structure and point clouds achieves comparable
results. Despite great progress in this field, the results are
not accurate enough for the AEC industry and the methods
are inherently rigid since they learn to identify a predefined
set of semantic classes. In this work we choose to perform
geometric segmentation, due to the flexibility that offers
to users to adjust the segmentation proposals and assign
their own semantic labels.

HoloLabel
Overview

HoloLabel leverages the advantages of AR devices, and
specifically of HoloLens, to perform 3D scene annota-
tion in the form of semantic segmentation. An overview
of the annotation pipeline is shown in Figure 1: (a) the
user enters the scene and begins reconstructing the 3D
mesh (see Scene Meshing); at intervals, the user performs
the semantic labeling process and begins by (b) triggering
the segmentation algorithm, which automatically proposes
geometrically-meaningful scene segments (see Semantic
Segmentation); (c) the user has to then edit - if needed
- and label these segments. There is the option to as-
sign a semantic category to entire segments or individual
mesh faces through virtual mesh painting (see User-in-the-
Loop Semantic Labeling); (d) further, the user can also add
rich semantic descriptions to segments using voice-to-text
technology (see User-based Descriptions).

User Interface

The user interface is implemented using the HoloLens
hand menu UX pattern (Microsoft 2022a). We chose this
pattern since it gives the user the ability to quickly pull up
and hide the menu from anywhere in the scene by raising
and lowering their palm. The menu, shown in Figure 2,
is split into three main components: central menu, label
menu, and dictation panel. We list their features below
and provide more details in subsequent sections.

Central Menu
The central menu is the core controller of the HoloLabel
application and has the following functions:

Update Scene: Requests a scene mesh reconstruction
update from the HoloLens (Scene Meshing).

Auto Segment: Sends the reconstructed scene mesh
to a remote Python server for automatic segmentation
into proposals (Semantic Segmentation).

Undo: Reverts recent history of the segmented mesh,
including any virtual segment painting and pins.

Editing Modes:
Labeling Mode: Allows the creation and placement of
description pins (User-based Descriptions).
Face Drawing Mode: Allows face-level painting
(User-in-the-Loop Semantic Labeling).
Segment Drawing Mode: Allows segment-level paint-
ing (User-in-the-Loop Semantic Labeling).

Label (in labeling mode): Creates description pins
using one of three options (User-based Descriptions).

Toggle Label Menu: Hides/Shows the label menu.
Toggle Mesh: Hides/Shows the wireframe mesh.

Export Labels: Exports the final annotated 3D mesh
to the remote Python server (Export).

IP: Edits the IP address of the remote Python server.

Figure 2: The user interface is split into three main
components: the central menu that controls the HoloLabel
application, the label menu that allows to select and change

classes while in editing mode, and the dictation panel that can
assign rich descriptions.

Label Menu
This menu contains a list of predefined semantic object
categories supported by HoloLabel. Although the user
has the option to define on the spot new categories, an
existing library can facilitate and speed-up the process.
We focus on categories like wall, floor, and ceiling, as
well as major furniture categories (e.g., table, chair, and
couch). When the annotation process starts, the user enters
editing mode and selects an object category from the menu.
Depending on whether the segment- or face- drawing mode
is enabled, the specified object category will be assigned to



the user-pinpointed segment or face. Each object category
is associated with a unique RGB color which is visualized
on the mesh when a segment or face receives this label. In
this way the user can keep track of which parts of the scene
have been annotated and which require further processing.

Dictation Panel

The dictation panel is used in labeling mode and allows
the user to record and attach rich descriptions to pins. It
can also be used to attach a semantic label not included in
the predefined label menu.

Scene Meshing

The HoloLens automatically reconstructs a 3D surface
mesh of a scene through Spatial Mapping (Microsoft
2022b), hereby referred to as HoloLens mesh. This surface
mesh is updated dynamically, i.e., not only are new parts
added but existing parts of the mesh can change over time.
For our setting this is highly impractical, since annotated
parts of the mesh should not change anymore. For this rea-
son, we store on the device an independent 3D mesh repre-
sentation of the reconstruction (scene mesh) that builds on
top of the Spatial Mapping output. When reconstructing
a scene, we actively display the HoloLens mesh using a
wireframe shader to provide the user with visual feedback
on the reconstruction progress (Figure 3b). Once a user
has reconstructed a room or a portion of it and is ready to
annotate it, the scene mesh is updated based on the current
HoloLens mesh. This is triggered by the Update Scene
button in the menu. The scene mesh is rendered densely
and will not change anymore, so that the user can safely
annotate it (Figure 3c). The above process is simple for
the first scene update since the scene mesh is still empty.
However, after the second update, we need to decide which
parts of the HoloLens mesh are scene additions, which we
have to add to our scene mesh, or scene changes, which
we have to ignore in favor of keeping the existing parts in
the scene mesh unaltered. We perform this by checking
for every face in the HoloLens mesh if it is already present
in the scene mesh using ray casting. Details on this are
shown in Algorithm 1.

Algorithm 1 Scene Mesh Update
input scene mesh: the current state of the scene
input HoloLens mesh: new surface scan
output updated scene mesh
for all faces f ∈ HoloLens mesh do

n← normal of f
v1,v2,v3← vertices of f
m← 1

3 (v1 + v2 + v3)
r← Ray{origin : m+ τ ·n, direction :−n}
if not (r intersects scene mesh) then

add f ,v1,v2,v3 to scene mesh
end if

end for

(a) (b) (c)
Figure 3: (a) Real world scene; (b) HoloLens mesh projected

on the display; (c) Scene mesh stored independently.

Semantic Segmentation
Following the scene update, the user can proceed with
the annotation process. To speed up this stage, the ap-
plication contains an automatic geometric segmentation
option that will provide the user with segmentation pro-
posals. Once the user requests segmentation proposals
via the central menu, the scene mesh is sent to a remote
Python server, where automatic geometric segmentation
is performed. The user can also proceed without this step
and directly start annotating the mesh by selecting with
intuitive hand gestures (drawing stroke) mesh faces that
belong to the selected semantic class. In the following, a
segment refers to either one of the proposals generated by
the automatic segmentation algorithm or to a single draw-
ing stroke made by the user. Both kinds of segments are
considered equivalent for all other computations.
Automatic Generation of Segmentation Proposals
The automatic geometric segmentation pipeline is de-
scribed in Figure 4. We first sample the mesh to obtain
a point cloud representation, which yields more flexibility
in the choice of segmentation algorithm. To perform ge-
ometric segmentation, we use a combination of RANSAC
(Fischler & Bolles 1981) to identify planar segments and
the euclidean clustering Density-Based Spatial Clustering
(DBSCAN, (Kriegel et al. 2011)) to identify remaining
segments of spatially contiguous groups of points. We
make sure to track which faces of the mesh belong to
which segment, to later convert the point cloud segmenta-
tion back to a mesh representation. The maximum number
of segments is chosen dynamically depending on the mesh
size following Equation (1), where the denominator con-
stant is chosen through manual tuning. We err on the side
of an over-segmentation rather than an under-segmentation
regime, as it is easier for users to join together small seg-
ments than to divide larger ones. The computational com-
plexity is O(N×O(RANSAC)), where:

N = number of mesh vertices/800 (1)

After segmenting the sampled point cloud, we project the
segmentation results back to the mesh. To identify the final
segment to which a face belongs we use majority voting
according to Equation (2), where si is the segment of face
fi, p j ∈ fi means that point p j has been sampled from face
fi and s(p j) is the segment assigned to point p j. In other
words, for each face we consider all the points sampled
from it and assign the segment to which the majority of



(a) Input Mesh (b) Sampled Point Cloud (c) Automatic Segmentation
Results

(d) Final Segmented Mesh

Figure 4: Segmentation Pipeline: Given an input mesh (a), we first sample a point cloud (b). This point cloud is segmented (c) as
described in Automatic Generation of Segmentation Proposals and the results, after being consolidated back on the mesh, are returned

on the HoloLens (d). Note that different colors in (c) and (d) denote different segments.

those points belong.

si = argmaxk

(
∑

j:p j∈ fi

I [s(p j) = k]

)
(2)

The segmented mesh is then returned to the HoloLens.

User-in-the-Loop Semantic Labeling
Once the segmentation proposals are received, the user
can accept and/or adapt them using the HoloLabel virtual
painting features. More concretely, if the proposal consists
of mesh faces that belong to one semantic category, the user
can directly assign that category using the segment-level
painting function. If, however, the proposal erroneously
contains faces from multiple categories, the user can use
the face-level painting function to manually override and
create new segments. The user can switch between the
modes from the central menu (Figure 2).
Segment-level painting The automatic segmentation
proposals are meant to facilitate and speed-up the drawing
process. To do so, we automatically segment the scene
such that each scene object can be composed of multiple
segments. This means that the user may have to paint mul-
tiple segment proposals per object until the whole object is
segmented. This however ensures that automatically gen-
erated segments are less likely to bleed into neighboring
objects, thus minimizing the need for face-level painting.
When the user enters the segment drawing mode, we use
the MRTK hand ray pointer as a virtual paintbrush. In
every frame we detect whether the user is currently pinch-
ing (i.e., the index finger and thumb are touching), which
indicates that the user would like to paint at the current
position. We then intersect the hand ray with the scene
mesh, which gives us the mesh face at which the user is
pointing. If this face belongs to a segment proposal, we
assign the selected semantic category to all vertices of the
segment. Otherwise, the pinch for this face gets ignored.
Face-level painting This feature consists of assigning
semantic categories to individual faces. It can be used for
manual segmentation due to the automatic segmentation
proposals being either incorrect or not available. When
the user enters face drawing mode, we follow a similar
approach to above. However, instead of searching for the
segment ID, we are overriding it (or setting it from scratch
if non-existent). Segments are created with a single stroke,

which begins when the user starts pinching and ends when
the pinch is released.

User-based Descriptions
Since choosing from a list of labels might end up being re-
strictive to the multitude of semantic categories that exist,
our tool provides the option to place virtual pins (Figure 5)
on the 3D mesh. Using voice-to-text technology the user
can provide rich semantic descriptions or a semantic la-
bel that is not available in the label menu. The user can
choose from three methods to place the pin: magnetic,
head, and manual (see third row of the central menu in
Figure 2)2. Magnetic and head options use the MRTK’s
Surface Magnetism Solver (Microsoft 2022e), which per-
forms a ray cast along the hand-ray or head-direction re-
spectively, and places the pin at the intersection point with
the scene mesh. The third, manual, option uses the Object
Manipulator Script (Microsoft 2022d) and allows the pin
to be selected, rotated, and moved with pinching motions.
The user can attach a description to each placed pin. This
is achieved using the dictation panel (shown on the bottom
right of Figure 2). With a pin selected, the user can record a
verbal description. The spoken words are translated to text
using MRTK’s off-the-shelf dictation handler (Microsoft
2022c). The text is stored along with the pin. Upon export,
each pin and its corresponding description are mapped to
the closest segment.

Figure 5: Example of an empty description pin

Export
The following files can be exported by sending the scene
mesh and semantic annotations to the Python server:

• A wavefront file (.obj) of the scene mesh with per-
vertex colors for easy visualization.

• A list of created pins, containing their 3D position
and assigned description.

2We perform an evaluation on pin options in the user study.



(a) RGB image of the room. (b) Ground truth mesh annotation with labels.
Figure 6: A view in the scene and the corresponding ground truth as obtained from the 3D mesh.

• A list of all scene mesh vertices, containing their 3D
position, semantic class, and segment ID.

• A list of segments, containing segment ID, class, and
assigned description.

To generate the last one, we need to map each description
pin to a segment. This is done by mapping the 3D location
of the pin to its closest vertex and subsequently identifying
the segment to which this vertex belongs.

Experiments
In this section, we evaluate the efficiency of HoloLabel’s
interface design and the accuracy of the as-is seman-
tic information in a limited user study. We recruited 4
non-expert users with limited or no experience with the
HoloLens to try our tool in a standardized indoor scene.
The environment is an open kitchen and living room, fea-
turing objects such as a table, chairs, a couch, counters,
cabinets, a refrigerator, and an oven. Prior to the study,
we used our tool to generate an initial ground truth seg-
mentation of the room. This initial ground truth was
at-places noisy and needed offline post-processing. The
post-processing took 15 minutes compared to the initial
collection which took 12 minutes. Annotating the same
scene in a fully manual way took 50 minutes (it does not
include the time required for reconstruction) vs 27 minutes
with the HoloLabel and refinement step (this includes the
reconstruction time). The processed ground truth is shown
in Figure 6.
The users are given an overview of the task and introduced
to our tool via a video tutorial, which shows the key features
of the interface and demonstrates an example of a simple
room segmentation. The environment shown in the tutorial
is different from the test environment, so the users are
encouraged to generalize what they learned to different
room geometries and furnishings. Once familiarized with
the list of semantic categories, the users are instructed to
segment the semantically distinct structures of the room
to the best of their abilities, keeping in mind to be precise
with segmentation boundaries and semantic classes.
We record the total annotation time per trial (Table 1). The
average time is nearly 14 minutes, which is slightly above
the time it took our team to create the initial ground truth.

Table 1: Annotation time, SUS score, and level of experience
with the HoloLens.

Participant Time SUS Score Experience

# 1 19:36 50 None

# 2 7:22 63.89 Limited

# 3 12:05 44.44 Limited

# 4 16:34 86.11 None

Average 13:54 61.11 -

Participants #2 and #3 – who self-reported having previous
experience using the HoloLens – were able to complete
the task faster. This is corroborated with our qualitative
observation that they were able to adapt to the gesture
controls faster and operated more independently compared
to participants #1 and #4. We note the following limitations
that hindered the progress of most or all participants:

• Sensitivity of the pinch detection was too high. Seg-
ments were unintentionally painted wrongly while in
Segment Drawing Mode which took extra time to fix.

• The colored mesh segments sometimes did not render
well through the HoloLens display, so participants
could not see the color/label of the segments.

• Participants mistook the underlying blue wireframe
HoloLens mesh as the mesh generated by the auto-
matic segmentation algorithm, and thus wasted time
trying to annotate it.

The exported mesh, segments, and labels were analyzed
offline using standard 3D segmentation metrics: Overall
Accuracy (OAcc) and Intersection over Union (IoU) (He
et al. 2021). OAcc represents the number of correctly clas-
sified samples, computed at both the class level and scene
level. IoU is a semantic segmentation metric that computes
the ratio of true positive samples over the union of the pre-
dicted positives and all positive samples. We first consider
that a sample should be a vertex in the mesh, but soon dis-
covered that this disproportionately weighs the areas with
higher detail more, as smooth flat surfaces are comprised
of fewer vertices than edges and corners. Thus for each
vertex, we compute the area-weighted vertex value, which
is the average area of the surrounding faces that the vertex



Table 2: OAcc and IoU metrics for study participants and an expert user.

OAcc IoU

Participant #1 #2 #3 #4 Expert #1 #2 #3 #4 Expert

FLOOR 15.61 84.33 88.12 86.78 94.16 13.76 73.16 73.42 61.97 86.67

CEILING 0.00 97.55 87.56 88.21 98.17 0.00 76.58 72.44 78.95 95.38

WALL 15.13 25.67 31.01 18.55 49.00 13.81 24.43 26.97 16.74 47.83

COUCH 44.31 1.12 30.57 76.25 83.19 32.96 1.10 29.67 35.89 52.12

CHAIR 0.00 0.00 27.02 0.00 24.12 0.00 0.00 8.12 0.00 23.57

TABLE 51.40 13.66 46.12 26.91 62.00 3.59 11.74 24.10 25.11 45.79

COUNTER 28.60 0.00 0.00 0.04 78.15 12.28 0.00 0.00 0.04 64.44

REFRIGERATOR 0.00 61.72 40.21 98.35 91.26 0.00 36.49 21.13 52.86 85.63

OVEN 0.00 20.08 0.00 1.06 50.50 0.00 10.12 0.00 0.32 29.96

CABINET 0.00 0.00 33.44 16.86 50.91 0.00 0.00 25.04 14.79 44.93

UNLABLLED 46.14 68.60 34.07 45.73 98.88 6.06 5.72 5.07 5.78 10.79

Avg over # classes 16.77 31.06 34.84 38.23 65.03 6.87 19.94 23.83 24.37 48.93

Avg over # vertices 13.50 51.54 55.94 49.83 73.59 - - - - -

belongs to. As a result, vertices that compose larger faces
will have more weight in the computation.
Since the HoloLens coordinate system can drift signifi-
cantly between trials in the world coordinate system, we
first register the participant annotated meshes to the ground
truth by manually aligning them to the ground truth mesh
and applying Iterative Closest Point (ICP, (Besl & McKay
1992)) for finetuning the pose. Due to the dynamic na-
ture of the mesh reconstruction in HoloLens, each user’s
scanned mesh can be slightly different from ground truth.
We attempt to eliminate most of the discrepancy by delet-
ing any structures in the user meshes that were not cap-
tured in the ground truth. Then for each vertex in the user
meshes, we search for the closest corresponding labeled
ground truth vertex using a k-d tree. Based on the vertex-
to-vertex mapping, we compute the evaluation metrics per
semantic class, as well as compute the mean value. For
OAcc, we also calculate the percentage of correctly la-
beled vertices overall, to account for imbalanced classes.
The results of the participants, as well as of an expert user
(oracle), are shown in Table 2.
The participant OAcc and IoU scores present low values,
but we identified the following two causes that are not
related to their annotation skill: HoloLens color rendering
issues and inconsistently defined segment boundaries. The
latter occurs if the auto segmentation algorithm performs
inconsistent between trials, or if the user has a tendency
to over-segment or under-segment objects. One example
of this occurrence is the boundary between the floor and
the wall; in some trials it is slightly off the ground instead
of being at the exact edge. While this mistake is not
obvious to the naked eye, it has a significant effect on
accuracy metrics. The remaining painting mistakes can be
attributed to fine-motor control difficulties due to lack of
training and practice, confusion between semantic classes

(i.e. mistaking the counter for a table), time limitations,
and general carelessness where the user was not motivated
to segment everything in the scene.
We can see in Figure 7, showing the best overall user
segmentation from participant #3, that the larger segments
of floor and ceiling are mostly correct, corresponding to
OAcc of 88.12% and 87.56% and IoU of 73.16% and
72.42%, respectively. Some classes like counter and oven
were not attempted to be labelled at all, which leads to a
drop in the class-averaged OAcc. Overall, the proportion
of areas labelled correctly range from 13.50% to 55.94%
across all four participants. We strongly believe that this
can be improved if the participants are given more training
with HoloLabel, as well as more time and encouragement
to make a detailed and accurate segmentation.
As a comparison, we also include the results from an ex-
pert user to show what a realistic upperbound on accuracy
might be. It is noticeable that while the results are sig-
nificantly better, the overall OAcc over all vertices is only
73.59%. More testing would be needed to fully verify the
reason for the discrepancy, but it is likely that the main
contributor is the natural variation between trials. It is not
possible to yield identical results from two trials due to
the stochasticity of the HoloLens generated mesh and the
segmentation algorithm, as well as natural variations in
the manual segmentation. For this reason, the numerical
metrics can be regarded as over-sensitive to HoloLabel.
After concluding the annotation, the users are asked to
fill out a 10-question survey 3 from the System Usability
Scale (SUS, (Brooke et al. 1996)) to gauge the usability
of the interface. The SUS score is an accepted and re-
liable tool for evaluating usability, including factors like
system integration, ease of usage, and learning curve. The

3https://forms.gle/4HawBhuXQdRssSVh8



(a) Sample of a participant-annotated mesh. (b) Correct (green) and incorrect (red) labels from a sample
participant’s mesh.

Figure 7: Sample of participant segmented mesh and its errors with respect to the ground truth.

maximum achievable score is 100 and the typical average
score is 68. Other VR systems (of purposes unrelated to
scene annotation) scored 72.5 (Butt et al. 2018a), 71.6
(Yépez et al. 2020), and 70 (Butt et al. 2018b). Our SUS
scores are in Table 1, showing an average of 61.11. This
is lower than average, but it can be largely attributed to the
participant’s inexperience with the HoloLens. Optimisti-
cally, we received high scores in the areas of confidence
while using tool, system integration, and system consis-
tency. The lowest scores came from ease of usage, ability
to independently operate, and quickly learnable by oth-
ers, which indicates that the problem is partially shared by
non-familiarity with the HoloLens platform.
As a bonus experiment, we also asked participant #2, who
demonstrated good fluency with the system, to evaluate
the three physical labelling methods — hand magnetism,
head magnetism, and manual placement. They were asked
to place each of the labels to a close-distance target (within
0.5 meter) and a far-distance target (over 2 meters away),
then rate the preferred method for each task. For both tasks,
the participant ranked manual placement first, followed by
head magnetism and then hand magnetism.

Discussion
Limitations: While HoloLabel greatly simplifies the
process of performing scene annotations, there is still room
for improvement. Currently the tool focuses on seman-
tic segmentation, however, an instance segmentation focus
could prove more practical for several AEC tasks. Further-
more, the choice of the automatic segmentation algorithm
was based on performance and simplicity concerns. The
result could be improved, e.g., with the use of learning-
based algorithms such as PointNet (Qi et al. 2017). How-
ever, direct testing on our data did not show improved
performance, which can be attributed to the different data
statistics. To leverage the advantages of such algorithms
would probably require retraining on a dataset that is spe-
cific to our case or employing domain adaptation tech-
niques. In addition, the HoloLens surface reconstruction
suffers from artifacts such as holes, floating hallucinations,
or rough surfaces. At the scene mesh update step, standard
mesh processing could be applied to reduce those artifacts

before the mesh is displayed to the user. This could lead
to an improved user experience and a better final result.
With respect to the user experience, we found that the
pinching motion was often triggered by accident. It re-
quires further investigation to determine if more robust
pinching detection would be possible or if another mo-
tion would be more suitable for HoloLabel. Generally,
we also found that the tool does require some experience
with the HoloLens, and we therefore suggest to have the
user complete a HoloLens training before using the tool.
In terms of user friendliness, investigating adjustments of
the paintbrush to perform the face/segment painting could
decrease the time needed to perform the painting tasks.
Further, some users reported that the segment colors were
not clearly visible from certain angles. This also requires
further investigation and stability improvements.
Future Impact: Given the rapid advancement of Mixed
Reality technologies, applications such as HoloLabel will
be part of the daily activities of AEC professionals. Holo-
Label can be used by architects and surveyors to acquire
the as-is status of an existing space, as well as by construc-
tion project managers to capture the state of a construction
site. It has the capability to decrease communication time
between the site and the office – e.g., the pin functionality
can be also used to attach notes and other information on
the mesh, for documentation or communication purposes.

Conclusion
In this paper, we introduce as semi-automatic tool to allow
generating 3D as-is semantic information of a scene in
an immersive and intuitive manner using the Microsoft
HoloLens. In particular, we combine the steps of scanning
a room and segmenting it, which are usually separated.
This allows users to annotate a room in a single pass,
which eliminates the need for the offline annotation step
required by traditional methods. We demonstrate that the
tool is convenient to use by non-expert on the task users
with little-to-no HoloLens experience. However, our user
study suggests that at least an introductory training should
be completed before starting to use the tool. While the
results look promising, there is room for improvement with
possible improvements present in the Discussion section.
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